皮卡丘的梦想2
Time Limit: 1000MS Memory Limit: 65536KB
Submit Statistic
Problem Description
一天,一只住在 501 实验室的皮卡丘决定发奋学习,成为像 LeiQ 一样的巨巨,于是他向镇上的贤者金桔请教如何才能进化成一只雷丘。
金桔告诉他需要进化石才能进化,并给了他一个地图,地图上有 n 个小镇,他需要从这些小镇中收集进化石。
接下来他会进行 q 次操作,可能是打听进化石的信息,也可能是向你询问第 l 个小镇到第 r 个小镇之间的进化石种类。
如果是打听信息,则皮卡丘会得到一个小镇的进化石变化信息,可能是引入了新的进化石,也可能是失去了全部的某种进化石。
如果是向你询问,你需要回答他第 l 个小镇到第 r 个小镇之间的进化石种类。
Input
首先输入一个整数 T (1 <= T <= 10),代表有 T 组数据。
每组数据的第一行输入一个整数 n (1 <= n <= 100000) 和一个整数 q (1 <= q <= 100000),分别代表有 n 个小镇,表皮卡丘有 q 次操作。
接下来输入 q 行,对于每次操作,先输入操作类型,然后根据操作类型读入:
1: 紧接着输入 2 个整数 a (1 <= a <= n), b (1 <= b <= 60),表示第 a 个小镇引入了第 b 种进化石
2: 紧接着输入 2 个整数 a (1 <= a <= n), b (1 <= b <= 60),表示第 a 个小镇失去了全部第 b 种进化石
3: 紧接着输入 2 个整数 l, r (1 <= l <= r <= n),表示他想询问从第 l 个到第 r 个小镇上可收集的进化石有哪几种
Output
对于每组输入,首先输出一行 “Case T:”,表示当前是第几组数据。
对于每组数据中的每次 3 操作,在一行中按编号升序输出所有可收集的进化石。如果没有进化石可收集,则输出一个 MeiK 的百分号 “%”(不包括引号)。
Example Input
1
10 10
3 1 10
1 1 50
3 1 5
1 2 20
3 1 1
3 1 2
2 1 50
2 2 20
3 1 2
3 1 10
Example Output
Case 1:
%
50
50
20 50
%
%
题解:很明显是用线段树来维护操作。可是用什么来存储状态呢?想了想,用二进制01来表示石头的有无。然后用位运算来支持操作。
代码:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
#include<vector>
#include<string.h>
#define ll long long
using namespace std;
const int N=1e5+10;
ll sum[N<<2];
int t,n,q;
int pos,val,op;
void pushup(int rt)
{
sum[rt]=sum[rt<<1]|sum[rt<<1|1];
}
void build(int l,int r,int rt)
{
if(l==r)
{
sum[rt]=0;
return ;
}
int mid=(r+l)>>1;
build(l,mid,rt<<1);
build(mid+1,r,rt<<1|1);
pushup(rt);
}
void add(int l,int r,int pos,int val,int rt)
{
if(l==r)
{
sum[rt]|=1ll<<(val-1);
return ;
}
int mid=(r+l)>>1;
if(pos<=mid)
add(l,mid,pos,val,rt<<1);
else
add(mid+1,r,pos,val,rt<<1|1);
pushup(rt);
}
void del(int l,int r,int pos,int val,int rt)
{
if(l==r)
{
sum[rt]&=~(1ll<<(val-1));
return ;
}
int mid=(r+l)>>1;
if(pos<=mid)
del(l,mid,pos,val,rt<<1);
else
del(mid+1,r,pos,val,rt<<1|1);
pushup(rt);
}
ll query(int l,int r,int L,int R,int rt)
{
if(L<=l&&R>=r)
{
return sum[rt];
}
ll ans=0;
int mid=(r+l)>>1;
if(L<=mid)
ans|=query(l,mid,L,R,rt<<1);
if(R>mid)
ans|=query(mid+1,r,L,R,rt<<1|1);
return ans;
}
int main()
{
scanf("%d",&t);
for(int k=1;k<=t;k++)
{
printf("Case %d:\n",k);
scanf("%d%d",&n,&q);
build(1,n,1);
while(q--)
{
scanf("%d",&op);
scanf("%d%d",&pos,&val);
if(op==1)
{
add(1,n,pos,val,1);
}
if(op==2)
{
del(1,n,pos,val,1);
}
if(op==3)
{
ll ans=query(1,n,pos,val,1);
ll cnt=0;
bool flag=true;
int ot=1;
while(ans)
{
if(ans&1)
{
if(flag) flag=false;
else printf(" ");
printf("%d",ot);
}
ot++;
ans>>=1;
}
if(flag)
{
printf("%%\n");
}
else
printf("\n");
}
}
}
return 0;
}