hdu 2204 Eddy's爱好 [容斥原理]【组合数学】

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2204

——————————————————————————————————————.
2017 口碑商家客流量预测大赛》
Eddy’s爱好

Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2436 Accepted Submission(s): 1118

Problem Description
Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣。
这些特殊数是这样的:这些数都能表示成M^K,M和K是正整数且K>1。
正当他再度沉迷的时候,他发现不知道什么时候才能知道这样的数字的数量,因此他又求助于你这位聪明的程序员,请你帮他用程序解决这个问题。
为了简化,问题是这样的:给你一个正整数N,确定在1到N之间有多少个可以表示成M^K(K>1)的数。

Input
本题有多组测试数据,每组包含一个整数N,1<=N<=1000000000000000000(10^18).

Output
对于每组输入,请输出在在1到N之间形式如M^K的数的总数。
每组输出占一行。

Sample Input
10
36
1000000000000000000

Sample Output
4
9
1001003332

Author
Eddy

Recommend
lcy

——————————————————————————————————————.
题目大意:
求在[1,n]中能用 MK 表示的数的个数,

解题思路:

N[1,108] ,所以K一定小于60,
又因为 xab=xab ,所以只要求指数为质数的就行了,

xp<=n ,即x的就是指数为p的个数

利用容斥原理,去掉重复的就行了,

于2^60>10^18,2*3*5*7>60,所以只要枚举到三即可。

注:最后一个样例应该有问题, 我的代码和网上代码结果都是1001003331,找了好久的精度….

附本题代码
——————————————————————————————————————.

LL n,ans;

int prime[100]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59};

void dfs(int id,bool flag,int val,int cnt){
    if(cnt == 0){
        LL tmp = pow(n,1.0/val); //指数为val的个数
        if(pow(tmp,0.0+val)>n) tmp--;tmp--;
        if(tmp>0){
            if(flag) ans+=tmp;
            else     ans-=tmp;
        }
        return ;
    }
    if(id>=17) return ;
    if(val*prime[id]<60)    dfs(id+1,flag,val*prime[id],cnt-1);
    dfs(id+1,flag,val,cnt);
}

int main(){
    while(~scanf("%I64d",&n)){
        ans = 0ll;
        for(int i=1;i<=3;i++) dfs(0,i&1,1,i);
        printf("%I64d\n",ans+1);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值