BZOJ 3224: Tyvj 1728 普通平衡树 [Splay]【数据结构】

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3224

————————————————————————————————————————————
3224: Tyvj 1728 普通平衡树

Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 12058 Solved: 5154
[Submit][Status][Discuss]
Description

您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:
1. 插入x数
2. 删除x数(若有多个相同的数,因只删除一个)
3. 查询x数的排名(若有多个相同的数,因输出最小的排名)
4. 查询排名为x的数
5. 求x的前驱(前驱定义为小于x,且最大的数)
6. 求x的后继(后继定义为大于x,且最小的数)

Input

第一行为n,表示操作的个数,下面n行每行有两个数opt和x,opt表示操作的序号(1<=opt<=6)

Output

对于操作3,4,5,6每行输出一个数,表示对应答案

Sample Input

10
1 106465
4 1
1 317721
1 460929
1 644985
1 84185
1 89851
6 81968
1 492737
5 493598

Sample Output

106465
84185
492737

HINT

1.n的数据范围:n<=100000

2.每个数的数据范围:[-2e9,2e9]
Source

平衡树

————————————————————————————————————————————

这两天不知怎地 一点思考能力都没有。 于是学了学Splay

其实Splay很好懂 只要知道平衡树的左旋和右旋操作,知道作用是吧一棵树做矮,就是不使它的某一条链变成。

本质还是一颗二叉树,只不过多了伸展的操作,也就是能通过左旋,右旋降低树高,保证某些操作总是在O(logn)的 不会变成O(n)。

—————————-update————————–
若干年过去了 终于我会写了SPLAY 补上一发自己的代码 放到上面了,,,

附模板
————————————————————————————————————

/**************************
自己写的代码
**************************/
#include <bits/stdc++.h>

typedef long long int LL;

const int N = 200000+7;
const int INF = (~(1<<31));
inline int read(){
    int x=0,f=1;char ch=getchar();
    for(;ch<'0'||'9'<ch;ch=getchar())   if(ch=='-')f=-1;
    for(;'0'<=ch&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
    return x*f;
}

/*******************************************************/

/*************SPLAY-tree************/

int n,m;

int ch[N][2];  //ch[][0] lson ch[][1] rson
int f[N];      //father
int sz[N];     //size
int val[N];    //value of node_i
int cnt[N];    // counts of the node_i
int root;      //root of splay-tree
int tot;       //tot,total,is the number of node of tree

void pushup(int x){
    if(x)sz[x]=sz[ch[x][0]]+sz[ch[x][1]]+cnt[x];
}

void rotate(int x,int k){   // k = 0 左旋, k = 1 右旋
    int y=f[x];int z=f[y];
    ch[y][!k]=ch[x][k];if(ch[x][k])f[ch[x][k]]=y;
    f[x]=z;if(z)ch[z][ch[z][1]==y]=x;
    f[y]=x;ch[x][k]=y;
    pushup(y),pushup(x);
}

void splay(int x,int goal){
    for(int y=f[x];f[x]!=goal;y=f[x])
        rotate(x,(ch[y][0]==x));
    if(goal==0) root=x;
}

void newnode(int rt,int v,int fa){
//    printf("newnode : rt =  %d\n",rt);
    f[rt]=fa;val[rt]=v,sz[rt]=cnt[rt]=1;
    ch[rt][0]=ch[rt][1]=0;
}

void delnode(int &rt){ //其实是为内存回收做准备的  回头再完善
    f[rt]=val[rt]=sz[rt]=cnt[rt]=0;
    ch[rt][0]=ch[rt][1]=rt=0;
}

/***************************以下是DEBUG***************************/

void Traversal(int rt){
    if(!rt) return;
    Traversal(ch[rt][0]);
    printf("%d f[]=%d sz[]=%d lson=%d rson=%d val[]=%d\n",rt,f[rt],sz[rt],ch[rt][0],ch[rt][1],val[rt]);
    Traversal(ch[rt][1]);
}
void debug(){
    printf("ROOT = %d <---\n",root);
    Traversal(root);
}

/**************************以下是前置操作**************************/

//以x为根的子树 的极值点  0 极小 1 极大
int extreme(int x,int k){
    while(ch[x][k])x=ch[x][k];splay(x,0);
    return x;
}
//以x为根的子树 第k个数的位置
int kth(int x,int k){
    if(sz[ch[x][0]]+1<=k&&k<=sz[ch[x][0]]+cnt[x]) return x;
    else if(sz[ch[x][0]]>=k) return kth(ch[x][0],k);
    else return kth(ch[x][1],k-sz[ch[x][0]]-cnt[x]);
}
int search(int rt,int x){
        if(ch[rt][0]&&val[rt]>x) return search(ch[rt][0],x);
    else if(ch[rt][1]&&val[rt]<x)return search(ch[rt][1],x);
    else return rt;
}
/***************************以下是正经操作*************************/
//前驱
int prec(int x){
    int k=search(root,x);
    splay(k,0);//debug();
    if(val[k]<x) return k;
    return extreme(ch[k][0],1);
}
//后继
int sufc(int x){
    int k=search(root,x);
    splay(k,0);//debug();
    if(val[k]>x) return k;
    return extreme(ch[k][1],0);
}
int rk(int x){
    int k=search(root,x);
    splay(k,0);
    return sz[ch[root][0]]+1;
}
//按照二叉排序树性质插入x
void _insert(int x){
    int y=search(root,x),k=-1;
    if(val[y]==x){
        cnt[y]++;
        sz[y]++;
        for(int yy=y;yy;yy=f[yy]) pushup(yy);
    }
    else {
        int p=prec(x),s=sufc(x);
        splay(p,0);splay(s,p);
        newnode(++tot,x,ch[root][1]);
        ch[ch[root][1]][0]=tot;
        for(int z=ch[root][1];z;z=f[z])pushup(z);
    }
    if(k==-1) splay(y,0);else splay(tot,0);
}

void _delete(int x){
    int y=search(root,x);
    if(val[y]!=x) return;
    if(cnt[y]>1){
        cnt[y]--;
        sz[y]--;
        for(int yy=y;yy;yy=f[yy]) pushup(yy);
    }
    else if(ch[y][0]==0||ch[y][1]==0){
        int z=f[y];
        ch[z][ch[z][1]==y]=ch[y][ch[y][0]==0];
        f[ch[y][ch[y][0]==0]]=z;delnode(y);
        for(int yy=z;yy;yy=f[yy]) pushup(yy);
    }
    else {
        int p=prec(x),s=sufc(x);
        splay(p,0);splay(s,p);
        ch[ch[root][1]][0]=0;
        delnode(ch[ch[root][1]][0]);
        for(int yy=s;yy;yy=f[yy]) pushup(yy);
    }
}

/*****************************************************/

int main(){
    scanf("%d",&n);
    tot=0,root=1;
    newnode(++tot,-INF,0),newnode(++tot,INF,root);
    ch[root][1]=tot;
    for(int op,x;n--;){
        op=read(),x=read();
             if(op==1) _insert(x);
        else if(op==2) _delete(x);
        else if(op==3) printf("%d\n",rk(x)-1);
        else if(op==4) printf("%d\n",val[kth(root,x+1)]);
        else if(op==5) printf("%d\n",val[prec(x)]);
        else           printf("%d\n",val[sufc(x)]);
    }
    return 0;
}


/**************************
当年套的模板代码
**************************/
#include <bits/stdc++.h>
using namespace std;

const int N = 100000+7;

int root,tot;
int father[N],data[N],cnt[N],value[N];
int son[N][3];

inline void Rotate(int x,int w){
    int y=father[x];
    cnt[y]=cnt[y]-cnt[x]+cnt[son[x][w]];
    cnt[x]=cnt[x]-cnt[son[x][w]]+cnt[y];
    son[y][3-w]=son[x][w];
    if(son[x][w]) father[son[x][w]]=y;
    father[x]=father[y];
    if(father[y]){
        if(y==son[father[y]][1]) son[father[y]][1]=x;
        else  son[father[y]][2]=x;
    }
    father[y]=x;
    son[x][w]=y;
}

inline void splay(int x){
    int y;
    while(father[x]){
        y=father[x];
        if(!father[y]){
            if(x==son[y][1]) Rotate(x,2);
            else Rotate(x,1);
        }
        else{
            if(y==son[father[y]][1]){
                if(x==son[y][1]) Rotate(y,2),Rotate(x,2);
                else             Rotate(x,1),Rotate(x,2);
            }
            else {
                if(x==son[y][2]) Rotate(y,1),Rotate(x,1);
                else             Rotate(x,2),Rotate(x,1);
            }
        }
    }
    root = x;
    return ;
}

inline int Search(int x,int w){
    while(data[x]!=w){
        if(w==data[x]) return x;
        if(w<data[x]) {
            if(!son[x][1]) break;
            x = son[x][1];
        }
        else {
            if(!son[x][2]) break;
            x = son[x][2];
        }
    }
    return x;
}

inline void Insert(int w){
    int k,kk;bool flag;
    if(!tot){
        tot=1;
        father[1]=0;cnt[1]=1;data[1]=w;root=1;value[1]=1;
        return ;
    }
    k = Search(root,w);
    if(data[k]==w){
        value[k]++;kk=k;
        flag = true;
    }
    else{
        tot++;
        data[tot]=w;
        father[tot]=k;
        cnt[tot]=1;
        value[tot]=1;
        if(data[k]>w) son[k][1]=tot;
        else          son[k][2]=tot;
        flag = false;
    }
    while(k){
        cnt[k]++;k=father[k];
    }
    if(flag) splay(kk);else splay(tot);
}

inline int Extreme(int x,int w){
    const int lala[3]={0,2147483647,-2147483647};
    int k=Search(x,lala[w]),tmp;
    tmp = data[k];
    splay(k);
    return tmp;
}

inline void del(int x){
    int k=Search(root,x),y;
    splay(k);
    if(data[k]==x){
        if(value[k]>1){
            value[k]--;
            cnt[k]--;
        }
        else if(!son[k][1]){
                y=son[k][2];
                son[k][2]=0;
                cnt[k]=0;
                data[k]=0;
                value[k]=0;
                root = y;
                father[root]=0;
        }
        else {
            father[son[k][1]]=0;
            y=Extreme(son[k][1],1);
            son[root][2]=son[k][2];
            cnt[root]=cnt[root]+cnt[son[k][2]];
            if(son[root][2])father[son[root][2]]=root;
            data[k]=0;son[k][1];son[k][2]=0;
            value[k]=0;
        }
    }
}

inline int pred(int x){
    int k = Search(root,x);
    splay(k);
    if(data[k]<x) return data[k];
    return Extreme(son[k][1],1);
}

inline int succ(int x){
    int k = Search(root,x);
    splay(k);
    if(data[k]>x) return data[k];
    return Extreme(son[k][2],2);
}

inline int kth(int x,int w){
    int i=root,tmp;
    while(!((x>=cnt[son[i][w]]+1)&&(x<=cnt[son[i][w]]+value[i]))&&i){
        if(x>cnt[son[i][w]]+value[i]){
            x = x - cnt[son[i][w]]-value[i];
            i = son[i][3-w];
        }
        else i = son[i][w];
    }
    tmp = i;splay(i);
    return tmp;
}

inline int findnum(int x){
    int k = Search(root,x);splay(k);
    root = k;
    return cnt[son[k][1]]+1;
}

int main(){
    int n,op,x;
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d%d",&op,&x);
        if(1==op) Insert(x);
        else if(2==op) del(x);
        else if(3==op) printf("%d\n",findnum(x));
        else if(4==op) printf("%d\n",data[kth(x,1)]);
        else if(5==op) printf("%d\n",pred(x));
        else if(6==op) printf("%d\n",succ(x));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值