题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5534
————————————————————————————————————————
Partial Tree
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1401 Accepted Submission(s): 693
Problem Description
In mathematics, and more specifically in graph theory, a tree is an undirected graph in which any two nodes are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.
You find a partial tree on the way home. This tree has n nodes but lacks of n−1 edges. You want to complete this tree by adding n−1 edges. There must be exactly one path between any two nodes after adding. As you know, there are nn−2 ways to complete this tree, and you want to make the completed tree as cool as possible. The coolness of a tree is the sum of coolness of its nodes. The coolness of a node is f(d), where f is a predefined function and d is the degree of this node. What’s the maximum coolness of the completed tree?
Input
The first line contains an integer T indicating the total number of test cases.
Each test case starts with an integer n in one line,
then one line with n−1 integers f(1),f(2),…,f(n−1).
1≤T≤2015
2≤n≤2015
0≤f(i)≤10000
There are at most 10 test cases with n>100.
Output
For each test case, please output the maximum coolness of the completed tree in one line.
Sample Input
2
3
2 1
4
5 1 4
Sample Output
5
19
————————————————————————————————————————
题目大意:
有n个节点,让你加n-1条边构建成一棵联通树,使得其权值和最大
题目给定节点度数为i的权值为f(i),
解题思路:
首先能够确定的是对于整棵树度数和为
2∗(n−1)
,
如果树联通的话,那么每个节点度数至少为
1
.
于是问题就变成如何分配
可以将这个问题变成在容量为
n−2
的背包中不限次数拿取体积为
i
价值为
之后就是因为节点度数至少为
1
了,而在转移的时候至少都是度数为
那么转移过程应该怎么办?
这样考虑,如果多了一个度数为
x
的节点,那么同时也就少了一个度数为
显然在转移的时候先减去
f[1]
,最后在结果加回
n∗f[1]
,那么就把应该有的度数为
1
的节点计算上了.又因为最后这个
附本题代码
————————————————————————————————————————
int n;
int f[2222];
int dp[2222];
int main(){
for(int _=read();_;_--){
n=read();
for(int i=1;i<n;i++) f[i]=read(),dp[i]=-1e9; dp[0]=0;
for(int i=1;i<n-1;i++)
for(int j=i;j<=n-2;j++)
dp[j]=max(dp[j],dp[j-i]+f[i+1]-f[1]);
printf("%d\n",dp[n-2]+n*f[1]);
}
return 0;
}