“玲珑杯”ACM比赛 Round #18 【4/5】 [待补-splay维护256位二进制标记]

题目链接:http://www.ifrog.cc/acm/contest/1020

1143 计算几何你瞎暴力

——————————————————————————————————————————
观察数据范围,发现点只有11*11*11个,那么可以记录每种点的个数,然后平方枚举计数即可,

(话说我当时为什么要写一个树状数组….用数组的话 多么简单….最后处理下前缀和就行了啊)

#include <bits/stdc++.h>
typedef long long int LL;
using namespace std;
#define abs(x) ((x)>0?(x):-(x))

const int N   = 2222+7;
const int MOD = 1e9+7;
const int INF = (~(1<<31));

/*********************************************/

int sum[1111];
LL zero = 0;
void update(int i,LL v){
    if(i==0) {zero+=v; return ;}
    for(;i<111;i+=(i&-i)) sum[i]+=v;
}
LL getSum(int i){
    LL ans = 0;
    for(;i;i-=(i&-i)) ans+=sum[i];
    return ans;
}

LL a[11][11][11];
struct node {
    int x,y,z;
}b[11*11*11*10];

int l = 0;
void solve(){
    for(int i=1;i<=l;i++){
        update(0,(a[b[i].x][b[i].y][b[i].z]-1)*a[b[i].x][b[i].y][b[i].z]/2);
        for(int j=i+1;j<=l;j++){
            update(abs(b[i].x-b[j].x)+abs(b[i].y-b[j].y)+abs(b[i].z-b[j].z),
                   a[b[i].x][b[i].y][b[i].z]*a[b[j].x][b[j].y][b[j].z]);
        }
    }
}

int main(){
    for(int i=0;i<=10;i++)for(int j=0;j<=10;j++)for(int k=0;k<=10;k++)
        b[++l].x=i,b[  l].y=j,b[  l].z=k;

    int _,n,q;scanf("%d",&_);
    while(_--){
        scanf("%d%d",&n,&q);
        zero = 0;
        memset(sum,0,sizeof(sum));
        memset(a,0,sizeof(a));
        for(int i=1,x,y,z;i<=n;i++){
            scanf("%d%d%d",&x,&y,&z);
            a[x][y][z]++;
        }
        solve();
        for(int i=1,x;i<=q;i++){
            scanf("%d",&x);
            if(x>50) x=50;
            printf("%lld\n",getSum(x)+zero);
        }
    }
    return 0;
}

1144 数论你还会快速幂

——————————————————————————————————————————
要注意k为0的情况 所有 ik=0 所以答案就是 n%p

首先有 (p+i)k(i)kmodp

然后发现存在长度为p的循环节 然后打表找规律发现
对于一般情况下一段循环节队结果的贡献是0的
如果k为p-1的倍数。则除 [i%p=0] 时贡献为0 其他情况下贡献是1

由费马小定理可知 ap11modp 所以这里有 ak1modp

而由于有 0np100 所以不成一个循环节的部分暴力就行了.
成循环节的部分 分类讨论下即可


#include <bits/stdc++.h>
typedef long long int LL;
using namespace std;
#define abs(x) ((x)>0?(x):-(x))

const int N   = 1e6+7;
const int MOD = 1e9+7;
const int INF = (~(1<<31));

/*********************************************/

LL qc(LL a,LL b,LL c){
    LL res = 0;
    while(b){
        if(b&1) res=(res+a)%c;
        b>>=1,a=(a+a)%c;
    }
    return res;
}

LL qmod(LL a,LL b,LL c) {
    LL res = 1ll;
    while(b) {
        if(b&1) res=qc(res,a,c);
        b>>=1,a=qc(a,a,c);
    }
    return res;
}

int main() {
    LL n,k,p;
    int _;
    scanf("%d",&_);
    while(_--) {
        scanf("%lld%lld%lld",&n,&k,&p);
        if(k == 0){
            printf("%lld\n",n%p);
            continue;
        }
        LL t = n,sum = 0; n %= p;
        for(LL i=1; i<=n; i++) {
            sum+=qmod(i,k,p);
            sum%=p;
        }

        if( k%(p-1) != 0 ) {
            printf("%lld\n",sum%p);
        } else {
            t/=p;
            sum += qc( (p-1), t , p);
            printf("%lld\n",sum%p);  // puts("--");
        }
    }
    return 0;
}

1146 图论你先敲完模板

——————————————————————————————————————————
首先考虑暴力做,有一个 O(n2) 的dp,
dp[i]=min{dp[j]+2x[i]x[j]j[1,i)}+a

但是考虑到 2x[i]x[j] 增长极快,所以我只要向左找至多 60个就行了


#include <bits/stdc++.h>
typedef long long int LL;
using namespace std;
#define abs(x) ((x)>0?(x):-(x))

const int N   = 1e6+7;
const int MOD = 1e9+7;
const int INF = (~(1<<31));

/*********************************************/
LL n,a;

LL x[N];
LL dp[N];

int main(){
    int _;scanf("%d",&_);
    while(_--){
        scanf("%lld%lld",&n,&a);
        for(int i=1;i<=n;i++){
            scanf("%lld",&x[i]);
        }

        dp[1]=0;
        for(int i=2;i<=n;i++){
            dp[i]=dp[i-1]+a+(1ll<<(x[i]-x[i-1]));
            for(int j=i-1;j;j--){
                if(x[i]-x[j]>60) break;
                dp[i]=min(dp[i],dp[j]+a+(1ll<<(x[i]-x[j])));
            }
        }

        printf("%lld\n",dp[n]);
    }
    return 0;
}

1147 最后你还是AK了

——————————————————————————————————————————
考虑每条边对结果的贡献,
最大化的利用的就是把a,b放到边的左右两边 ,且使最小时最大就行了,这就是这条边贡献的倍数

就按照边的贡献倍数最大的加最大的c[i] ,次大的加次大的c[i] ….就行了

可以dfs一边处理 出每条边的贡献倍数,

然后贪心加过去就好了

然后注意这个爆栈的问题


//#pragma comment(linker, "/STACK:102400000,102400000")
#define OPENSTACK
#include <bits/stdc++.h>
typedef long long int LL;
using namespace std;
#define abs(x) ((x)>0?(x):-(x))

const int N = 111111+7;
/*********************************************/

int n,k;
struct edge{
    int to,next,w;
}G[N<<1];
int head[N],tot;
void add(int u,int v,int w){
    G[tot].w=w,G[tot].to=v,G[tot].next=head[u],head[u]=tot++;
}

struct node {
    int w,x;
}e[N];

int l;
int dp[N];
void dfs(int u,int f=0,int w=0){
    dp[u]=1;
    for(int i=head[u],to,w;i != -1;i=G[i].next){
        to = G[i].to;
        w  = G[i].w;
        if(to == f) continue ;
        dfs(to,u,w);
        dp[u]+=dp[to];
    }

    e[++l].w  =w;
    e[  l].x    =min(dp[u],n-dp[u]);
}

bool cmp(node a,node b){return a.x>b.x;}
bool cmp2(int a,int b){return a>b;}

int c[N];
int main(){

    #ifdef OPENSTACK
        int size = 64 << 20; // 64MB
        char *p = (char*)malloc(size) + size;
        #if (defined _WIN64) or (defined __unix)
            __asm__("movq %0, %%rsp\n" :: "r"(p));
        #else
            __asm__("movl %0, %%esp\n" :: "r"(p));
        #endif
    #endif

    int _;scanf("%d",&_);
    while(_--){
        tot = l = 0;memset(head,-1,sizeof(head));
        scanf("%d%d",&n,&k);
        for(int i=2,u,v,w;i<=n;i++){
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w);
            add(v,u,w);
        }
        for(int i=1;i<=k;i++) scanf("%d",&c[i]);

        dfs(1);

        sort(e+1,e+l+1,cmp);
//        for(int i=0;i<=l;i++)      printf("%d %d\n",e[i].w,e[i].x);

        sort(c+1,c+k+1,cmp2);

        for(int i=1;i<=k;i++) e[i].w+=c[i];

        LL ans = 0;
        for(int i=1;i<l;i++){
//            printf("%d %d\n",e[i].w,e[i].x);
            ans+=1LL*e[i].w*e[i].x;
        }
        printf("%lld\n",ans);
    }
    #ifdef OPENSTACK
        exit(0);
    #else
        return 0;
    #endif
}

1148 数据结构你干瞪眼啊

——————————————————————————————————————————
虽然以我的能力几乎不可能在现场调完这道题,但是还是嘴巴了下

当时考虑了256个颜色就可以用4个64位整形或者长度为256的bitset维护

由于有了区间翻转,所以一定要用splay

对于方阵的处理 可以建立n个splay (后来题解说可以仅简历一个splay,因为每次操作区间都是在一行内的连续区间)

所以对我来说难点就是处理二进制标记上,,不是很好处理啊,,,码力不够啊..

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值