# SPOJ FTOUR2 - Free tour II [点分治+启发式合并]【分治】

—————————————————————————————————————
FTOUR2 - Free tour II
no tags
After the success of 2nd anniversary (take a look at problem FTOUR for more details), this 3rd year, Travel Agent SPOJ goes on with another discount tour.

The tour will be held on ICPC island, a miraculous one on the Pacific Ocean. We list N places (indexed from 1 to N) where the visitors can have a trip. Each road connecting them has an interest value, and this value can be negative (if there is nothing interesting to view there). Simply, these N places along with the roads connecting them form a tree structure. We will choose two places as the departure and destination of the tour.

Since September is the festival season of local inhabitants, some places are extremely crowded (we call them crowded places). Therefore, the organizer of the excursion hopes the tour will visit at most K crowded places (too tiring to visit many of them) and of course, the total number of interesting value should be maximum.

Briefly, you are given a map of N places, an integer K, and M id numbers of crowded place. Please help us to find the optimal tour. Note that we can visit each place only once (or our customers easily feel bored), also the departure and destination places don’t need to be different.

Input

There is exactly one case. First one line, containing 3 integers N K M, with 1 <= N <= 200000, 0 <= K <= M, 0 <= M <= N.

Next M lines, each line includes an id number of a crowded place.

The last (N - 1) lines describe (N - 1) two-way roads connected N places, form a b i, with a, b is the id of 2 places, and i is its interest value (-10000 <= i <= 10000).

Output

Only one number, the maximum total interest value we can obtain.

Example

Input:
8 2 3
3
5
7
1 3 1
2 3 10
3 4 -2
4 5 -1
5 7 6
5 6 5
4 8 3

Output:
12
Explanation

We choose 2 and 6 as the departure and destination place, so the tour will be 2 -> 3 -> 4 -> 5 -> 6, total interest value = 10 + (-2) + (-1) + 5 = 12
——————————————————————————————————————

## 最好去看论文===>戳这里

——————————————————————————————————————

#include <bits/stdc++.h>
typedef long long int LL;
using namespace std;

const int N = 200000+7;
const int INF = (~(1<<31));

int x=0,f=1;char ch = getchar();
for(;ch<'0'||'9'<ch;ch=getchar()) if(ch=='-') f=-1;
for(;'0'<=ch&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}

/*************************************************************/

int n,k,m,ans;

bool vis[N];
int black[N];

struct edge{
int to,next;
int w;
}G[N<<1];
}

/********重心 begin********/
int sz[N],dn[N],siz,zx;

void getzx(int u,int fa=0){
sz[u]=1;dn[u]=0;
to = G[i].to;
if(to == fa||vis[to]) continue;//puts("---+++---");
getzx(to,u);
sz[u]+=sz[to];
dn[u]=max(dn[u],sz[to]);
}
dn[u]=max(dn[u],siz-sz[u]);
if(dn[u]<dn[zx]) zx=u;
}

/*********重心 end********/

int dep[N],dis[N],deep_mx;
void getdis(int u,int fa=0){
deep_mx=max(deep_mx,dep[u]);
to = G[i].to;
if(vis[to]||to==fa)continue;
dep[to]=dep[u]+black[to];
dis[to]=dis[u]+G[i].w;
getdis(to,u);
}
}
int tmp[N],mx[N];
void getmx(int u,int fa=0){
tmp[dep[u]]=max(tmp[dep[u]],dis[u]);
to = G[i].to;
if(vis[to]||to==fa)continue;
getmx(to,u);
}
}

vector<pair<int,int> >v;
void solve(int u){
vis[u]=1;if(black[u]) k--; v.clear();

int l=0;
to=G[i].to; if(vis[to]) continue;
deep_mx = 0;
dep[to]=black[to];
dis[to]=G[i].w;
getdis(to,u);
v.push_back(make_pair(deep_mx,to));
}

sort(v.begin(),v.end());

for(int i=0,now;i<v.size();i++){
getmx(v[i].second,u);
now = 0;
if(i){
for(int j=v[i].first;j>=0;j--){
while(now+j<k&&now<v[i-1].first)
now++,mx[now]=max(mx[now],mx[now-1]);
if(now+j<=k) ans=max(ans,mx[now]+tmp[j]);
}
}
if(i==v.size()-1){
for(int j=0;j<=v[i].first;j++){
if(j<=k) ans = max(max(tmp[j],mx[j]),ans);
tmp[j]=mx[j]=0;
}
}
else {
for(int j=0;j<=v[i].first;j++)
mx[j]=max(mx[j],tmp[j]),tmp[j]=0;
}
}
if(black[u])k++;
to=G[i].to;
if(vis[to]) continue;
siz=sz[to],zx=0;getzx(to);
solve(zx);
}
}

int main(){
zx=0;  tot = 0;

for(int i=1,u,v,w;i<n;i++){
}

dn[0]=n;
siz = n; getzx(1);
//    printf("tot = %d zx = %d\n",tot,zx);
//    for(int i=1;i<=n;i++)
//        printf("dn[%d] = %d sz[%d] = %d\n",i,dn[i],i,sz[i]);

ans = 0; solve(zx);

printf("%d\n",ans);
return 0;
}


05-26 46
07-26 1594
05-11 55
07-12