【dp】POJ 1015 Jury Compromise

/*
基础dp
K - Jury Compromise
题意: n组D[j],P[j]数字,选择m组使选择的D[j]和与P[j]和差最小,如果和差相等,选择D[j]和与P[j]和的总和最大的。
题解:感觉自己菜到怀疑人生。。。
dp[i][j] 代表选第i个,选择的D[]和与P[]和差为j的 最大总和。
path[i][j] 记录前i个选择的组。
ca[i] = D[i]-P[i];
he[i] = D[i]+P[i];
如果选择的前i组和差无法达到j,那么dp[i][j] = -1;
if(k 前面有路径 && k 在前面的路径上没有出现)
    dp[i][j+ca[k]] = max(dp[i][j+ca[k]],dp[i-1][j]+he[k]);
j 的原有范围应该是-20*m~20*m , 将其范围加上20*m 变成 0~40*m;
*/
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1010;
int dp[21][N],path[21][N],res[N];
int a[210],b[210],ca[210],he[210];
int n;
int main()
{
    int n,m,cas = 1;
    while(cin >> n >> m)
    {
        if(!n && !m)
            break;
        for(int i = 0; i < n; i++)
        {
            cin >> a[i] >> b[i];
            ca[i] = a[i]-b[i];
            he[i] = a[i]+b[i];
        }
        memset(dp,-1,sizeof(dp));
        memset(path,-1,sizeof(path));
        dp[0][20*m] = 0;
        for(int i = 0; i < m; i++)
        {
            for(int j = 0; j <= 40*m; j++)
            {
                if(dp[i][j] >= 0)
                {
                    for(int k = 0; k < n; k++)
                    {
                        int flag = 0;
                        int pre = path[i][j];
                        int ans = j;
                        if(pre == k)
                            continue;
                        for(int f = i-1; f >= 1; f--)
                        {
                            ans -= ca[pre];
                            pre = path[f][ans];
                            if(pre == k)
                            {
                                flag = 1;
                                break;
                            }
                        }
                        if(!flag)
                        {
                            if(dp[i+1][j+ca[k]] < dp[i][j]+he[k])
                            {
                                dp[i+1][j+ca[k]] = dp[i][j]+he[k];
                                path[i+1][j+ca[k]] = k;
                            }
                        }
                    }
                }
            }
//            for(int j = 0; j <= 40*m; j++)
//                    printf("%d %d %d\n",j,path[i+1][j],dp[i+1][j]);
//            printf("\n");
        }
        int mx = 0,id = 0;
        for(int i = 0; i <= 20*m; i++)
        {
            if(dp[m][20*m+i] > mx)
            {
                mx = dp[m][20*m+i];
                id = i;
            }
            if(dp[m][20*m-i] > mx)
            {
                mx = dp[m][20*m-i];
                id = -i;
            }
            if(dp[m][20*m+i] != -1 || dp[m][20*m-i] != -1)
                break;
        }
        int ans = id+20*m;
        int pre = path[m][ans];
        //printf("%d\n",pre);
        int ans1 = 0,ans2 = 0;
        int k = m;
        res[--k] = pre;
        ans1 += a[pre];
        ans2 += b[pre];
        for(int i = m-1; i > 0; i--)
        {
            ans -= ca[pre];
            pre = path[i][ans];
            res[--k] = pre;
            ans1 += a[pre];
            ans2 += b[pre];
            //printf("%d\n",pre);
        }
        sort(res,res+m);
        //printf("%d %d\n",id,mx);
        printf("Jury #%d\n",cas++);
        printf("Best jury has value %d for prosecution and value %d for defence:\n",ans1,ans2);
        printf("%d",res[0]+1);
        for(int i = 1; i < m; i++)
            printf(" %d",res[i]+1);
        puts("");
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值