取石子(二)
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
小王喜欢与同事玩一些小游戏,今天他们选择了玩取石子。
游戏规则如下:共有N堆石子,已知每堆中石子的数量,并且规定好每堆石子最多可以取的石子数(最少取1颗)。
两个人轮流取子,每次只能选择N堆石子中的一堆,取一定数量的石子(最少取一个),并且取的石子数量不能多于该堆石子规定好的最多取子数,等哪个人无法取子时就表示此人输掉了游戏。
假设每次都是小王先取石子,并且游戏双方都绝对聪明,现在给你石子的堆数、每堆石子的数量和每堆石子规定的单次取子上限,请判断出小王能否获胜。
-
输入
-
第一行是一个整数T表示测试数据的组数(T<100)
每组测试数据的第一行是一个整数N(1<N<100),表示共有N堆石子,随后的N行每行表示一堆石子,这N行中每行有两个数整数m,n表示该堆石子共有m个石子,该堆石子每次最多取n个。(0<=m,n<=2^31)
输出
- 对于每组测试数据,输出Win表示小王可以获胜,输出Lose表示小王必然会败。 样例输入
-
2 1 1000 1 2 1 1 1 1
样例输出
-
Lose Lose
提示
-
注意下面一组测试数据
2
1 1
2 2
正确的结果应该是Win
因为小王会先从第二堆石子中取一个石子,使状态变为
1 1
1 2
这种状态下,无论对方怎么取,小王都能获胜。
-
/* 南阳oj 135 http://acm.nyist.net/JudgeOnline/problem.php?pid=135 尼姆博弈 和 巴什 博弈的结合 奇异局势为零则必败 */ /* 如何分析: 1- 有n堆石子 ---尼姆博弈 2- 每堆石子有取出的上限 --- 巴什博弈 */ # include <stdio.h> # include <stdlib.h> # include <string.h> # include <math.h> int main(void) { int T; scanf("%d",&T); while(T--) { int n; scanf("%d",&n); int i; int ans=0;//0^A还是A //这个for循环是尼姆博弈 n堆石子 for(i=0; i<n; ++i) { int a,b; scanf("%d%d",&a,&b); ans ^= a%(b+1);//最多取b个,(b+1)*r就代表输,所以要进行石子总数(a)对 b+1取余判断 //a %(b+1) 是先将每堆石子进行化简 ,化简成不受限制取石子的情况(为尼姆博弈做准备),这样就可以 进行尼姆博弈了 //a%(b+1) 如果为零,则必败,不为零,则胜,将其化简成 0至(最大取子数减去一),为的就是消除取子限制,方便尼姆博弈 } if(0 == ans) // 如果 ans 为零,则为奇异局势,必败 printf("Lose\n"); else printf("Win\n"); } return 0; }
-
第一行是一个整数T表示测试数据的组数(T<100)