(尼姆+巴什)取石子--NOJ

取石子(二)

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 5
描述

小王喜欢与同事玩一些小游戏,今天他们选择了玩取石子。

游戏规则如下:共有N堆石子,已知每堆中石子的数量,并且规定好每堆石子最多可以取的石子数(最少取1颗)。

两个人轮流取子,每次只能选择N堆石子中的一堆,取一定数量的石子(最少取一个),并且取的石子数量不能多于该堆石子规定好的最多取子数,等哪个人无法取子时就表示此人输掉了游戏。

假设每次都是小王先取石子,并且游戏双方都绝对聪明,现在给你石子的堆数、每堆石子的数量和每堆石子规定的单次取子上限,请判断出小王能否获胜。

输入
第一行是一个整数T表示测试数据的组数(T<100)
每组测试数据的第一行是一个整数N(1<N<100),表示共有N堆石子,随后的N行每行表示一堆石子,这N行中每行有两个数整数m,n表示该堆石子共有m个石子,该堆石子每次最多取n个。(0<=m,n<=2^31)
输出
对于每组测试数据,输出Win表示小王可以获胜,输出Lose表示小王必然会败。
样例输入
2
1
1000 1
2
1 1
1 1
样例输出
Lose
Lose
提示
注意下面一组测试数据
2
1 1 
2 2
正确的结果应该是Win
因为小王会先从第二堆石子中取一个石子,使状态变为
1 1
1 2

这种状态下,无论对方怎么取,小王都能获胜。

/*
  南阳oj 135 
  http://acm.nyist.net/JudgeOnline/problem.php?pid=135
  尼姆博弈 和 巴什 博弈的结合 
  奇异局势为零则必败
   
*/

/*
	如何分析:
1-	有n堆石子 ---尼姆博弈 
2-	每堆石子有取出的上限 --- 巴什博弈 

*/
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include <math.h>

int main(void)
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		int n;
		scanf("%d",&n);
		int i;
		int ans=0;//0^A还是A 
		//这个for循环是尼姆博弈 n堆石子 
		for(i=0; i<n; ++i)
		{
			int a,b;
			scanf("%d%d",&a,&b);
			ans ^= a%(b+1);//最多取b个,(b+1)*r就代表输,所以要进行石子总数(a)对 b+1取余判断 
			//a %(b+1) 是先将每堆石子进行化简 ,化简成不受限制取石子的情况(为尼姆博弈做准备),这样就可以 进行尼姆博弈了
			//a%(b+1) 如果为零,则必败,不为零,则胜,将其化简成 0至(最大取子数减去一),为的就是消除取子限制,方便尼姆博弈 
		}
		
		if(0 == ans) // 如果 ans 为零,则为奇异局势,必败 
			printf("Lose\n");
		else
			printf("Win\n");	
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值