前缀和

一维前缀和:
给定N个数a1 a2 a3 a4 … an

求[L,R]范围内的和

我们用sum[k] 表示 前k个数的和
那么sum[k] = sum[k-1] + ak;

[L,R] 范围内的和就为 sum[R] - sum[i-1]

二维前缀和:
给定一个矩阵,求数字和最大的子矩阵
4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

最大子矩阵是
9 2
-4 1
-1 8

我们用sum[i][j] 表示 0-i行,0-j列矩阵的和
sum[i][j] = sum[i][j-1] + sum[i-1][j] - sum[i-1][j-1] + a[i][j]

int get(int x,int y1,int y2){
    return s[x][y2]-s[x-1][y2]-s[x][y1]+s[x-1][y1];
}
for(int y2=1;y2<=n;y2++)
        for(int y1=0;y1<y2;y1++)
            for(int x=1;x<=n;x++){
                f[x]=max(0,f[x-1])+get(x,y1,y2);
                ans=max(ans,f[x]);
            }

代码来自:http://www.cnblogs.com/candy99/p/5811908.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值