机器学习之非线性回归(Logistic Regression)


1. 线性回归存在的问题

(为什么举这个例子?逻辑回归为什么Y是0,1分类。。。哎,咱也不知道,咱也不敢问)假设肿瘤的良(0)恶(1)性与肿瘤尺寸大小(tumor size)有如下关系:
在这里插入图片描述
某一尺寸大小的肿瘤均划分成了良性、恶性,其划分Malignant可能等于0.5。但是当加入一个尺寸很大的样本时:
在这里插入图片描述
为了拟合所有数据,回归线将发生变化,如果Malignant仍然等于0.5,那么将会出现一部分先前划分为恶性肿瘤的样本被划分成良性(因为尺寸大小小于Malignant=0.5对应的tumor size),所以我们就只能将Malignant的值进行调整

2. Logistic Regression基本模型

在这里插入图片描述
逻辑回归公式
引入Sigmoid函数使曲线平滑化:
在这里插入图片描述
其中,g为决策值,z=θx+b,x为特征值,e为自然对数
在这里插入图片描述
该函数是一条S形的曲线,并且曲线在中心点附近的增长速度较快,在两段的增长速度较慢。w值越大,曲线中心的增长速度越快。从图上可知,Y的值域为(0,1),那么就可以将决策函数值大于等于0.5的具有对应x属性的对象归为正样本,决策函数值小于0.5的具有对应x属性的对象归为负样本。这样就可以对样本 数据进行二分类。
预测函数
在这里插入图片描述
可用概率表示
在这里插入图片描述
这是条件概率,在给定X,θ的条件下,y=1发生的概率

损失函数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
该直线使得红点与预测值(红点x在直线上的值)的差值的平方之和最小,即找到合适的θ0,θ1使得上式之和最小

3. 逻辑回归推导

逻辑回归是一种简单,常见的二分类模型,通过输入未知类别对象的属性特征序列得到对象所处的类别。由于Y(x)是一个概率分布函数,因此对于二分类而言,离中心点的距离越远,其属于某一类的可能性就越大。
对于常见二分类,逻辑回归通过一个区间分布进行划分,即如果Y值大于等于0.5,则属于正样本,如果Y值小于0.5,则属于负样本,这样就可以得到逻辑回归模型,判别函数如下:
在这里插入图片描述
在模型参数w与b没有确定的情况下,模型是无法工作的,因此接下来就是在实际应用期间最重要的是模型参数w和b的估计。
其代价函数为(这里的Y(x)为h(x)=θ0+θ1X):
在这里插入图片描述
给定y值为1时,代价函数曲线横坐标为决策函数Y(x)的值越接近1,则代价越小,反之越大。当决策函数Y(x)的值为1时,代价为0。类似的,当给定y值为0时有同样的性质。
如果将所有m个样本的代价累加并平均,就可以得到最终的代价函数:
在这里插入图片描述
由于y的取值为0或1,结合上面两个公式可以得到:
在这里插入图片描述
这样就得到了样本的总的代价函数,代价越小表明所得到模型更符合真实模型。当损失函数最小的时候,就得到了所求参数。
梯度下降解法
关于损失函数的求解,可以通过梯度下降法求解,先设置一个学习率。从1到n,更新:
在这里插入图片描述
其中更新法则为:
在这里插入图片描述
重复更新步骤,直到代价函数的值收敛为止。对于学习率的设定,如果过小,则可能会迭代过多的次数而导致整个过程变得很慢;如果过大,则可能导致错过最佳收敛点。所以,在计算过程中要选择合适的学习率。

4. 应用实例

以下为研究一个学生优秀还是差等的问题,已知训练数据的学生基本特征信息如下:
在这里插入图片描述
需要分类学生数据:
在这里插入图片描述
步骤一:
整理数据,转化为数学模型
将分数归一化,除以10,将评级优表示为1,评级差表示为0,则转化为:
在这里插入图片描述
步骤二:
假设Y(x)为:
在这里插入图片描述
求出此时的损失函数,同时初始值设置为(0.5,0.5,0.5,0.5),学习率为0.3,并且设置损失函数为0.1时,迭代停止截止。
步骤三:
第一次迭代的值为(-0.096,0.50008,-0.32,0.350858),不断迭代,直到损失函数小于0.1.
步骤四:
最终就能求出Y(x)的表达式,从而能够分类上面的数据:
在这里插入图片描述
参考连接:https://baijiahao.baidu.com/s?id=1628902000717534995&wfr=spider&for=pc

5. python实现代码

在这里插入图片描述
在这里插入图片描述
更多文章:https://blog.csdn.net/qq_33208851/article/details/95230847

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 机器学习中的逻辑回归(Logistic Regression)是一种用于分类问题的监督学习算法。它被广泛应用于各种领域,如金融、医疗、社交网络等。 逻辑回归的基本原理是利用一个线性模型,将输入特征与输出结果之间的关系进行建模。然后通过在线性模型的基础上引入一个逻辑函数(sigmoid函数),将输出结果映射到一个概率值。 具体来说,逻辑回归算法通过对训练数据进行学习,估计出模型的参数,使得模型能够对新的输入样本进行分类预测。在训练过程中,逻辑回归通过最大化似然函数的方法来估计模型的参数。常用的优化算法有梯度下降法、牛顿法等。 逻辑回归的一个重要应用是二分类问题,其中输出结果只有两个类别。通过设置一个阈值,将模型输出的概率值映射为两个类别中的一个。 逻辑回归的优点包括简单、可解释性强、计算效率高。同时,逻辑回归对于处理大规模数据集和高维数据也具有较好的适应性。然而,逻辑回归也有一些不足之处,例如无法处理非线性关系以及对异常值比较敏感。 总之,逻辑回归是一种经典的机器学习算法,既简单又有效。它在各种分类问题中得到了广泛应用,并且在实际应用中表现良好。 ### 回答2: 机器学习中的逻辑回归(Logistic Regression)是一种常用的分类算法。它通过建立一个逻辑回归模型,将输入的特征与相应的类别进行关联。 逻辑回归可以处理二分类问题,也可以通过修改为多类别问题进行处理。它的核心思想是使用逻辑函数(也称为Sigmoid函数)将线性回归模型的输出映射到[0,1]之间,从而得到样本属于某个类别的概率。 逻辑回归的训练过程主要包括两个步骤:参数初始化和优化。参数初始化就是设置模型的初始权重和偏置,然后通过最优化算法(如梯度下降法)来迭代地更新参数,使得模型的损失函数最小化。 逻辑回归的优势在于它计算速度快、实现简单,且对大规模数据集的处理效果较好。它能够处理线性可分问题,并且可以通过引入正则化技术来防止过拟合。 然而,逻辑回归也有一些限制。由于它是基于线性模型的,对于非线性关系的分类问题,逻辑回归可能无法很好地适应。此外,逻辑回归对特征的选择和预处理较为敏感,需要进行适当的特征工程。 总的来说,逻辑回归是一种简单且有效的分类算法,特别适用于二分类问题。尽管有其局限性,但在实际应用中,逻辑回归仍然被广泛使用,并且可以作为其他更复杂模型的基础。 ### 回答3: 机器学习中的逻辑回归(logistic regression)是一种用于分类问题的机器学习算法。逻辑回归被广泛应用于各个领域,如医学诊断、金融风险评估、文本分类等。 逻辑回归的基本思想是通过对输入变量和输出变量之间的关系进行建模来进行分类。它用到了一个逻辑函数(logistic function),将输入变量的线性组合映射到0和1之间的概率值。逻辑函数通常是sigmoid函数,常用的形式是1 / (1 + exp(-z)),其中z是输入变量的线性组合。 训练逻辑回归模型的过程是通过最大似然估计来拟合模型参数。最大似然估计的目标是找到能最大化观测到的样本的条件概率的参数。为了实现这一点,通常使用梯度下降法来最小化损失函数。损失函数可以是似然函数的负对数,即对数损失函数。 逻辑回归有一些优点。首先,它是一种简单而直观的模型,易于理解和实现。其次,逻辑回归模型的参数可以通过梯度下降等优化算法进行有效求解。此外,逻辑回归模型具有较好的解释性,可以通过参数的符号和大小了解自变量与因变量的关系。 然而,逻辑回归也有一些限制。首先,它通常只适用于处理线性可分的问题。其次,逻辑回归模型对于特征之间的相关性比较敏感,如果特征之间具有高度相关性,可能导致模型出现过拟合现象。此外,逻辑回归模型的输出是概率值,对于某些任务可能不够精确。 总之,逻辑回归是一种常用的机器学习算法,用于解决分类问题。其简单而直观的思想和容易求解的特点使其在实际应用中非常有用。但需要注意逻辑回归的局限性,并结合具体问题选择合适的模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值