Ubuntu 17.10+CUDA9.0+ cuDNN7+TensorFlow1.8安装

 nvidia 驱动

查找适合自己的显卡驱动  https://www.nvidia.cn/Download/index.aspx?lang=cn

(1) 下载安装

sudo ./NVIDIA.run -no-x-check -no-nouveau-check -no-opengl-files

 或者用PPA方式安装

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt-get update

sudo apt-get install nvidia-390

(2) 关机重启查看 gpu 信息:nvidia-smi

   

.CUDA9.0 安装(TensorFlow1.8不支持cuda9.2)  

 CUDA9.0百度云下载链接   

 链接:https://pan.baidu.com/s/1qcDQqenfVsB8CxSCzgWOYw 密码:5f0d

(1)  确定自己的系统信息,到官网 https://developer.nvidia.com/cuda-toolkit-archive 下载相应的安装文件 

(2)  下载后在当前目录运行命令安装

sudo ./cuda_9.0.176_384.81_linux.run

安装过程中基本上选择默认路径以及选Yes,但是提示是否安装Nvidia驱动时一定选择No,因为此前已经安装了相应的显卡驱动

(3)  安装成功后,声明一下环境变量,并将其写入到 ~/.bashrc 的尾部:

export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}

export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

(4)  设置环境变量

终端输入:sudo gedit /etc/profile

文件末尾加入:export PATH=“/usr/local/cuda/bin:$PATH”

运行:source /etc/profile,查看是否有误

 (5)  设置动态链接库

终端输入:sudo gedit /etc/ld.so.conf.d/cuda.conf

添加:/usr/local/cuda/lib64

执行生效:sudo ldconfig

 (6)  测试cuda的samples

cd /usr/local/cuda/samples/1_Utilities/deviceQuery

make

sudo ./deviceQuery

 

2.gcc6 安装(CUDA9 不支持 gcc7.x 编译)

(1) 查看当前版本

gcc -v

g++ -v

(2) 安装

sudo apt-get install gcc6

sudo apt-get install g++-6

(3) 查看已安装版本

 ls /usr/bin/gcc*

ls /usr/bin/g++*

(4) 设置优先级

sudo update-alternatives --install /usr/bin/gcc gcc/usr/bin/gcc-6 100

sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-6 100

(5) 更新当前版本

sudo update-alternatives --config gcc

sudo update-alternatives --config g++

(6) 再查看当前版本

gcc -v

g++ -v

3. cuDNN7安装

(1) 官网下载 cuDNN7 库    https://developer.nvidia.com/cudnn

(2) 解压并拷贝到 CUDA 安装路径下:

cd cuda/include

sudo cp cudnn.h /usr/local/cuda/include 

cd cuda/lib64

sudo cp lib* /usr/local/cuda/lib64

生成软连接

cd  /usr/local/cuda/lib64/

sudo rm -rf libcudnn.so libcudnn.so.7 sudo ln -s libcudnn.so.7.0.3 libcudnn.so.7 sudo ln -s libcudnn.so.7 libcudnn.so

4.Tensorflow安装

(1)  安装最新版本    

sudo pip3 install tensorflow-gpu

注:若下载时出现超时的情况 ,可以使用镜像网址来代替

 

sudo pip3  install -i http://pypi.douban.com/simple --trusted-host pypi.douban.com tensorflow-gpu

(2)  调试

在终端输入python,进入python编译环境,然后输入:

import tensorflow as tf

引包tensorflow包,如果没有报错,则安装成功,否则就有问题。

然后可以输入

tf.__version__

tf.__path__

查看tensorflow的安装版本和安装路径。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值