nvidia 驱动
查找适合自己的显卡驱动 https://www.nvidia.cn/Download/index.aspx?lang=cn
(1) 下载安装
sudo ./NVIDIA.run -no-x-check -no-nouveau-check -no-opengl-files
或者用PPA方式安装
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-390
(2) 关机重启查看 gpu 信息:nvidia-smi
1 .CUDA9.0 安装(TensorFlow1.8不支持cuda9.2)
CUDA9.0百度云下载链接
链接:https://pan.baidu.com/s/1qcDQqenfVsB8CxSCzgWOYw 密码:5f0d
(1) 确定自己的系统信息,到官网 https://developer.nvidia.com/cuda-toolkit-archive 下载相应的安装文件
(2) 下载后在当前目录运行命令安装
sudo ./cuda_9.0.176_384.81_linux.run
安装过程中基本上选择默认路径以及选Yes,但是提示是否安装Nvidia驱动时一定选择No,因为此前已经安装了相应的显卡驱动
(3) 安装成功后,声明一下环境变量,并将其写入到 ~/.bashrc 的尾部:
export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
(4) 设置环境变量
终端输入:sudo gedit /etc/profile
文件末尾加入:export PATH=“/usr/local/cuda/bin:$PATH”
运行:source /etc/profile,查看是否有误
(5) 设置动态链接库
终端输入:sudo gedit /etc/ld.so.conf.d/cuda.conf
添加:/usr/local/cuda/lib64
执行生效:sudo ldconfig
(6) 测试cuda的samples
cd /usr/local/cuda/samples/1_Utilities/deviceQuery
make
sudo ./deviceQuery
2.gcc6 安装(CUDA9 不支持 gcc7.x 编译)
(1) 查看当前版本
gcc -v
g++ -v
(2) 安装
sudo apt-get install gcc6
sudo apt-get install g++-6
(3) 查看已安装版本
ls /usr/bin/gcc*
ls /usr/bin/g++*
(4) 设置优先级
sudo update-alternatives --install /usr/bin/gcc gcc/usr/bin/gcc-6 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-6 100
(5) 更新当前版本
sudo update-alternatives --config gcc
sudo update-alternatives --config g++
(6) 再查看当前版本
gcc -v
g++ -v
3. cuDNN7安装
(1) 官网下载 cuDNN7 库 https://developer.nvidia.com/cudnn
(2) 解压并拷贝到 CUDA 安装路径下:
cd cuda/include
sudo cp cudnn.h /usr/local/cuda/include
cd cuda/lib64
sudo cp lib* /usr/local/cuda/lib64
生成软连接
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.7 sudo ln -s libcudnn.so.7.0.3 libcudnn.so.7 sudo ln -s libcudnn.so.7 libcudnn.so
4.Tensorflow安装
(1) 安装最新版本
sudo pip3 install tensorflow-gpu
注:若下载时出现超时的情况 ,可以使用镜像网址来代替
sudo pip3 install -i http://pypi.douban.com/simple --trusted-host pypi.douban.com tensorflow-gpu
(2) 调试
在终端输入python,进入python编译环境,然后输入:
import tensorflow as tf
引包tensorflow包,如果没有报错,则安装成功,否则就有问题。
然后可以输入
tf.__version__
tf.__path__
查看tensorflow的安装版本和安装路径。