https://zhuanlan.zhihu.com/p/76164082
https://zhuanlan.zhihu.com/p/91582909
0.生成一个2*5的二维矩阵
dp=[[0]*2]*5
1.贪心算法
把问题拆解成多个小问题,然后求小问题的最优解,合并起来当做整个问题的解。
1.1贪心算法的三步走!
第一步
明确到底什么是最优解?明确下来之后用小本本记下来!
第二步
明确什么是子问题的最优解?再用小本本记下来!
第三步
分别求出子问题的最优解再堆叠出全局最优解?
1.2下面我总结一下使用贪心算法的前提:
1、原问题复杂度过高;
2、求全局最优解的数学模型难以建立;
3、求全局最优解的计算量过大;
4、没有太大必要一定要求出全局最优解,“比较优”就可以。
1.3分解方式
按串行任务分
时间串行的任务,按子任务来分解,即每一步都是在前一步的基础上再选择当前的最优解。(股票问题)
def maxProfit(self, prices):
#贪心 如果增加就加入利润
temp=0
for i in range(1,len(prices)):
if prices[i]-prices[i-1]>0:
temp+=prices[i]-prices[i-1]
return temp
按规模递减分
规模较大的复杂问题,可以借助递归思想(见第2课),分解成一个规模小一点点的问题,循环解决,当最后一步的求解完成后就得到了所谓的“全局最优解”。(0-1背包问题)
def Greedy(weights,values,lable):
#1.最优解是重量范围内价值最大
#2.选择最大价值的
newvalues=values.copy()
c=0
l=len(values)
for _ in range(l):
i=values.index(max(values))
if c+weights[i]<=lable:
c=c+weights[i]
values.pop(i)
weights.pop(i)
print([i for i in newvalues if i not in values] )
按并行任务分
这种问题的任务不分先后,可能是并行的,可以分别求解后,再按一定的规则(比如某种配比公式)将其组合后得到最终解。
2.动态规划
动态规划往往使用表格来存储中间结果
2.1步骤
第一步骤:定义数组元素的含义,上面说了,我们会用一个数组,来保存历史数组,假设用一维数组 dp[] 吧。这个时候有一个非常非常重要的点,就是规定你这个数组元素的含义,例如你的 dp[i] 是代表什么意思?
第二步骤:找出数组元素之间的关系式,我觉得动态规划,还是有一点类似于我们高中学习时的归纳法的,当我们要计算 dp[n] 时,是可以利用 dp[n-1],dp[n-2].....dp[1],来推出 dp[n] 的,也就是可以利用历史数据来推出新的元素值,所以我们要找出数组元素之间的关系式,例如 dp[n] = dp[n-1] + dp[n-2],这个就是他们的关系式了。而这一步,也是最难的一步,后面我会讲几种类型的题来说。
第三步骤:找出初始值。学过数学归纳法的都知道,虽然我们知道了数组元素之间的关系式,例如 dp[n] = dp[n-1] + dp[n-2],我们可以通过 dp[n-1] 和 dp[n-2] 来计算 dp[n],但是,我们得知道初始值啊,例如一直推下去的话,会由 dp[3] = dp[2] + dp[1]。而 dp[2] 和 dp[1] 是不能再分解的了,所以我们必须要能够直接获得 dp[2] 和 dp[1] 的值,而这,就是所谓的初始值。
由了初始值,并且有了数组元素之间的关系式,那么我们就可以得到 dp[n] 的值了,而 dp[n] 的含义是由你来定义的,你想求什么,就定义它是什么,这样,这道题也就解出来了。