针对深度学习的图像分类的理解

参考:https://blog.csdn.net/mzpmzk/article/details/78636170#commentBox     

 一直在网上看到的都是关于深度学习是黑匣子,不需要理解它里面做了什么,只要给它一个输入,它就给你一个输出或者多个输出。中间的模型具体做了什么谁也说不清,也不需要说清楚。这里我们就拿图像分类举例:

那么每个卷积层在做什么呢,在收集信息。

每一个网络层都是在提取图像的特征

1,边缘检测,检测到很多个边缘,

2。多个边缘特征组合后得到角度特征和外形特征

3.多个外形特征组合后得到物体部分特征,部分特征在组合成物体。

简单的说,这个人类检测,

首先我使用颜色筛选器,得出了很3个颜色的数据得到激活,其他的都是0,(蓝色-深灰色,浅灰色激活)

然后数据按照一定比例组合进入边缘筛选器,然后通过筛选后得到了边缘激活后的数据,其他的都是0(横着,竖着激活)

又进入外形筛选器,然后通过筛选后得到外形激活的数据,其他的都是0(有点圆的激活)

又进入部分外形筛选器,通过筛选后得到中间的是激活的,其他的都是0.(有人头的激活)

中间的对应的输出是person。所以得到结果-人

 

所以我们可以看出来,图像分类中深度学习方法,没那么神秘,其实就是我们图像分类的一般步骤。

我们图像分类的一般方法,也是通过特征提取的方式去分类,比如通过颜色,角度,边缘,等一个或多个排列组合的方式。

深度学习只是不再使用这些方法,而是通过数据去自己生成过滤网,就是卷积核,也就是权重,我们使用多个过滤网的组合,数据通过这些组合后,得到的结果就是我们想要的答案。

再举个例子人脸识别:我输入一个人的照片,通过眼镜大小(1、0)、鼻子长短(1、0)、嘴巴宽细(1、0)、眉毛长短(1、0)、脸长、脸宽、6个过滤器的组合得到的一组数据输出(1、1、1、1、0.8、0.8) ,我拿这个输出对比数据库中记录的照片的数据字典【(1、1、1、1、0.8、0.8):小王,(1、0、0、1、0.8、0.8):小李】,知道了你是小王。

但是深度学习不再关注与我们该使用什么滤波器可以完美的筛选出来表现很好的特征,就是给我一个照片,我也不知道使用什么滤波器,假设先使用10个颜色滤波器,得到的结果和我想得不一样,那么怎么办,修改滤波器啊,改了一下后再次尝试,还是不行,继续修改,多次尝试后,你发现可以了。那么这个滤波组合就是你需要的了。

有点像泰勒公式展开多项式一样,我不知道你的方程是什么样的,没关系,我通过一个一个小方程去堆砌出来。来一个数据我验证一次,不行就修改,直到来了数据也不需要修改就能满足

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值