求把线段随机分段后第k短线段的期望长度

博客探讨了如何计算线段被随机分成n段后,第k短段的期望长度问题。通过分析最短段的期望长度E(Lmin),利用概率和积分推导出E(Lmin)=n^2/1,并通过数学归纳法得出第k短线段的期望长度公式:n/(1+i=1∑kn-i+1)
摘要由CSDN通过智能技术生成

题意

有一条线段,不妨设线段长度为 1 1 1。现在在其中随机选 n − 1 n-1 n1个点,使得该线段被分成 n n n段。问长度第 k k k短的段的期望长度是多少。

分析

先考虑如何计算最短那段的期望长度,即 E ( L m i n ) E(L_{min}) E(Lmin)

考虑 P ( L m i n ≥ x ) P(L_{min}\ge x) P(Lminx),相当于把每一段先剪掉 x x x,然后把长度为 1 − n x 1-nx 1nx的线段均分为 n n n段,也就是每一段都只能落在 [ 0 , 1 − n x ] [0,1-nx] [0,1nx]中,因此 P ( L m i n ≥ x ) = ( 1 − n x ) n − 1 P(L_{min}\ge x)=(1-nx)^{n-1} P(Lminx)=(1nx)n1

又因为 P ( L m i n ≤ x ) = ∫ 0 x P ( L m i n = x ) d x P(L_{min}\le x)=\int_0^xP(L_{min}=x)dx P(Lminx)=0xP(Lmin=x)dx

两边同时求导(右边为 y = P ( L m i n = x ) y=P(L_{min}=x) y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值