题意
有一条线段,不妨设线段长度为 1 1 1。现在在其中随机选 n − 1 n-1 n−1个点,使得该线段被分成 n n n段。问长度第 k k k短的段的期望长度是多少。
分析
先考虑如何计算最短那段的期望长度,即 E ( L m i n ) E(L_{min}) E(Lmin)。
考虑 P ( L m i n ≥ x ) P(L_{min}\ge x) P(Lmin≥x),相当于把每一段先剪掉 x x x,然后把长度为 1 − n x 1-nx 1−nx的线段均分为 n n n段,也就是每一段都只能落在 [ 0 , 1 − n x ] [0,1-nx] [0,1−nx]中,因此 P ( L m i n ≥ x ) = ( 1 − n x ) n − 1 P(L_{min}\ge x)=(1-nx)^{n-1} P(Lmin≥x)=(1−nx)n−1
又因为 P ( L m i n ≤ x ) = ∫ 0 x P ( L m i n = x ) d x P(L_{min}\le x)=\int_0^xP(L_{min}=x)dx P(Lmin≤x)=∫0xP(Lmin=x)dx
两边同时求导(右边为 y = P ( L m i n = x ) y=P(L_{min}=x) y