bzoj 4816: [Sdoi2017]数字表格 莫比乌斯反演

题意

定义fibonacci数列。用 f[i] 表示数列的第 i 项,那么

f[0]=0

f[1]=1

f[n]=f[n1]+f[n2],n2

有一个 n×m 的表格,第 i 行第j列的格子中的数是 f[gcd(i,j)] ,其中 gcd(i,j) 表示 i,j 的最大公约数。求这n*m个数的乘积是多少。
答案对 109+7 取模。
100% 的数据, T1000,1n,m106

分析

一开始推公式的时候习惯性地写了 上去,推了半天才有另外一个人过来告诉我说,这题求的是乘积。。。

我们设n<=m,显然

ans=i=1nj=1mf(gcd(i,j))

d=gcd(i,j),sum(d)=i=1nj=1m[gcd(i,j)==d]

通过简单的反演可以得到
sum(d)=i=1ndndimdiμ(i)

显然有
ans=d=1nf(d)sum(d)

把上面两条式子合并在一起
ans=d=1ni=1ndf(d)ndimdiμ(i)

T=di
ans=T=1nd|Tf(d)nTmTμ(Td)
注意到我们可以把两个下取整提出来
ans=T=1n(d|Tf(d)μ(Td))nTmT

然后就大功告成啦!
注意到对于那两个下去整,可以将 [1,n] 分为 2(n+m) 段,使得每段的指数是相同的。
那么我们只要O(nlogn)预处理出括号内那部分的前缀积,每次快速幂即可。
时间复杂度 O(nlogn+Tnlogn)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=1000005;
const int MOD=1000000007;

int tot,prime[N],f[N],s[N],ny[N],mu[N];
bool not_prime[N];

int ksm(int x,int y)
{
    int ans=1;
    while (y)
    {
        if (y&1) ans=(LL)ans*x%MOD;
        x=(LL)x*x%MOD;y>>=1;
    }
    return ans;
}

void prework(int n)
{
    mu[1]=1;
    for (int i=2;i<=n;i++)
    {
        if (!not_prime[i]) prime[++tot]=i,mu[i]=-1;
        for (int j=1;j<=tot&&i*prime[j]<=n;j++)
        {
            not_prime[i*prime[j]]=1;
            if (i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            mu[i*prime[j]]=-mu[i];
        }
    }
    f[0]=0;f[1]=1;
    ny[0]=ny[1]=1;
    for (int i=2;i<=n;i++) f[i]=(f[i-1]+f[i-2])%MOD,ny[i]=ksm(f[i],MOD-2);
    for (int i=1;i<=n;i++) s[i]=1;
    for (int i=1;i<=n;i++)
        for (int j=i;j<=n;j+=i)
            if (mu[j/i]==1) s[j]=(LL)s[j]*f[i]%MOD;
            else if (mu[j/i]==-1) s[j]=(LL)s[j]*ny[i]%MOD;
    for (int i=2;i<=n;i++) s[i]=(LL)s[i]*s[i-1]%MOD,ny[i]=ksm(s[i],MOD-2);
}

int solve(int n,int m)
{
    if (n>m) swap(n,m);
    int ans=1;
    for (int i=1,last;i<=n;i=last+1)
    {
        last=min(n/(n/i),m/(m/i));
        ans=(LL)ans*ksm((LL)s[last]*ny[i-1]%MOD,(LL)(n/i)*(m/i)%(MOD-1))%MOD;
    }
    return (ans+MOD)%MOD;
}

int main()
{
    prework(1000000);
    int T;
    scanf("%d",&T);
    while (T--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        printf("%d\n",solve(n,m));
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值