bzoj 4006: [JLOI2015]管道连接 斯坦纳树

题意

该部门有 n 个情报站,用 1 到 n 的整数编号。给出 m 对情报站 ui;vi 和费用 wi,表示情
报站 ui 和 vi 之间可以花费 wi 单位资源建立通道。
如果一个情报站经过若干个建立好的通道可以到达另外一个情报站,那么这两个情报站就
建立了通道连接。形式化地,若 ui 和 vi 建立了通道,那么它们建立了通道连接;若 ui 和 vi 均
与 ti 建立了通道连接,那么 ui 和 vi 也建立了通道连接。
现在在所有的情报站中,有 p 个重要情报站,其中每个情报站有一个特定的频道。小铭铭
面临的问题是,需要花费最少的资源,使得任意相同频道的情报站之间都建立通道连接。
0

分析

恩如果只有一种颜色的话就是斯坦纳树裸题啦。

斯坦纳树:
f[i,s]表示以i为根且s中为1的点必须连通的最小费用。
两种转移:
1、枚举子集f[i,s]=f[i,sub]+f[i,s-sub]
2、枚举根f[i,s]=f[j,s]+dis[i,j]
第二维可用spfa转移,具体看代码。

但这题还有多种颜色的限制,在外面再套一层dp,dp[s]表示s中为1的点必须连通的最小费用。
通过枚举子集即可把树推广到森林的情况。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;

const int N=1005;
const int P=15;
const int S=2005;
const int inf=0x3f3f3f3f;

int n,m,p,col[P],cnt,last[N],st[N],tmp[P],sum[P],f[N][S],dp[S],bin[P];
struct edge{int to,len,next;}e[N*10];
queue<int> q;
bool vis[N][S];

void addedge(int u,int v,int len)
{
    e[++cnt].to=v;e[cnt].len=len;e[cnt].next=last[u];last[u]=cnt;
    e[++cnt].to=u;e[cnt].len=len;e[cnt].next=last[v];last[v]=cnt;
}

bool check(int s)
{
    for (int i=1;i<=p;i++) tmp[i]=0;
    for (int i=1;i<=p;i++)
        if (s&bin[i-1]) tmp[col[i]]++;
    for (int i=1;i<=p;i++)
        if (tmp[col[i]]<sum[col[i]]&&tmp[col[i]]) return 0;
    return 1;
}

void spfa(int s)
{
    while (!q.empty())
    {
        int u=q.front();
        q.pop();
        for (int i=last[u];i;i=e[i].next)
            if (f[u][s]+e[i].len<f[e[i].to][s|st[e[i].to]])
            {
                f[e[i].to][s|st[e[i].to]]=f[u][s]+e[i].len;
                if ((s|st[e[i].to])==s&&!vis[e[i].to][s])
                {
                    vis[e[i].to][s]=1;
                    q.push(e[i].to);
                }
            }
        vis[u][s]=0;
    }
}

void solve()
{
    for (int i=1;i<=n;i++)
    {
        for (int s=1;s<bin[p];s++) f[i][s]=inf;
        if (st[i]) f[i][st[i]]=0;
    }
    for (int s=1;s<bin[p];s++)
    {
        for (int i=1;i<=n;i++)
        {
            if (st[i]&&!(s&st[i])) continue;
            for (int sub=(s-1)&s;sub;sub=(sub-1)&s)
                f[i][s]=min(f[i][s],f[i][sub]+f[i][s^sub]);
            if (f[i][s]<inf)
            {
                vis[i][s]=1;q.push(i);
            }
        }
        spfa(s);
    }
    for (int s=1;s<bin[p];s++) dp[s]=inf;
    for (int i=1;i<=n;i++)
        for (int s=1;s<bin[p];s++)
            dp[s]=min(dp[s],f[i][s]);
    for (int s=1;s<bin[p];s++)
        if (check(s))
            for (int sub=(s-1)&s;sub;sub=(sub-1)&s)
                if (check(sub)&&check(s^sub)) dp[s]=min(dp[s],dp[sub]+dp[s^sub]);
}

int main()
{
    scanf("%d%d%d",&n,&m,&p);
    bin[0]=1;
    for (int i=1;i<=p;i++) bin[i]=bin[i-1]*2;
    for (int i=1;i<=m;i++)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        addedge(x,y,z);
    }
    for (int i=1;i<=p;i++)
    {
        int c,d;
        scanf("%d%d",&c,&d);
        st[d]=bin[i-1];sum[c]++;
        col[i]=c;
    }
    solve();
    printf("%d",dp[bin[p]-1]);
    return 0;
}
发布了1103 篇原创文章 · 获赞 146 · 访问量 45万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览