bzoj 3594: [Scoi2014]方伯伯的玉米田 二维树状数组优化dp

题意

方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美。
这排玉米一共有N株,它们的高度参差不齐。
方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列。
方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作。拔玉米则可以随意选择一个集合的玉米拔掉。
问能最多剩多少株玉米,来构成一排美丽的玉米。
1 < N < 10000,1 < K ≤ 500,1 ≤ ai ≤5000

分析

有一个很显然的结论,就是每次选择区间的右端点必然是n。
那么我们可以设f[i,j]表示以i结尾且操作的次数为j时的最长不下降序列。
显然f[i,j]=max(f[k,l])+1(k<=i,l<=j,a[k]+l<=a[i]+j)
然后我就不会了。。。
其实这是三维偏序,可以用二维树状数组来优化。

注意转移的时候第二位要倒着推,原理跟滚动背包类似。

这题告诉我们,推出dp式子后最好把式子写在纸上,而且要写成比较优美的形式,这样可以方便优化。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=10005;

int n,m,mx,f[N][505],a[N],c[605][6005];

void modify(int x,int y,int z)
{
    x++;
    for (int i=x;i<=m+1;i+=i&(-i))
        for(int j=y;j<=mx;j+=j&(-j))
            c[i][j]=max(c[i][j],z);
}

int query(int x,int y)
{
    int ans=0;x++;
    for (int i=x;i;i-=i&(-i))
        for (int j=y;j;j-=j&(-j))
            ans=max(ans,c[i][j]);
    return ans;
}

int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++) scanf("%d",&a[i]),mx=max(mx,a[i]);
    mx+=m;
    int ans=0;
    for (int i=1;i<=n;i++)
        for (int j=m;j>=0;j--)
        {
            f[i][j]=query(j,a[i]+j)+1;
            modify(j,a[i]+j,f[i][j]);
            ans=max(ans,f[i][j]);
        }
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值