bzoj 3875: [Ahoi2014]骑士游戏 spfa+dp

题意

【故事背景】
长期的宅男生活中,JYY又挖掘出了一款RPG游戏。在这个游戏中JYY会
扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽。
【问题描述】
在这个游戏中,JYY一共有两种攻击方式,一种是普通攻击,一种是法术攻
击。两种攻击方式都会消耗JYY一些体力。采用普通攻击进攻怪兽并不能把怪兽彻底杀死,怪兽的尸体可以变出其他一些新的怪兽,注意一个怪兽可能经过若干次普通攻击后变回一个或更多同样的怪兽;而采用法术攻击则可以彻底将一个怪兽杀死。当然了,一般来说,相比普通攻击,法术攻击会消耗更多的体力值(但由于游戏系统bug,并不保证这一点)。
游戏世界中一共有N种不同的怪兽,分别由1到N编号,现在1号怪兽入
侵村庄了,JYY想知道,最少花费多少体力值才能将所有村庄中的怪兽全部杀死呢?
n<=200000,sigma(s)<=10^6

分析

这题题解还是比较巧妙的,并没有想到。。。
就是设f[i]表示消灭i需要的最小代价,显然f[i]=min(s[i]+sigma(f[j])),j为i的后继。
直接spfa暴力松弛即可。具体看代码。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;

typedef long long LL;

const int N=200005;

int cnt,n,vis[N],ls[N],last[N];
LL a[N],b[N],f[N],g[N];
struct edge{int to,next;}e[N*10];
queue<int> q;

LL read()
{
    LL x=0;int f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

void addedge(int u,int v)
{
    e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
    e[++cnt].to=u;e[cnt].next=ls[v];ls[v]=cnt;
}

void spfa()
{
    while (!q.empty())
    {
        int u=q.front();q.pop();vis[u]=0;
        if (f[u]<=g[u]) continue;
        for (int i=ls[u];i;i=e[i].next)
        {
            if (!vis[e[i].to]) vis[e[i].to]=1,q.push(e[i].to);
            g[e[i].to]+=g[u]-f[u];
        }
        f[u]=g[u];
    }
}

int main()
{
    n=read();
    for (int i=1;i<=n;i++)
    {
        a[i]=read();b[i]=read();
        int s=read();
        while (s--)
        {
            int x=read();
            addedge(i,x);
        }
    }
    for (int i=1;i<=n;i++)
    {
        f[i]=b[i];g[i]=a[i];
        for (int j=last[i];j;j=e[j].next) g[i]+=b[e[j].to];
        q.push(i);vis[i]=1;
    }
    spfa();
    cout<<f[1];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值