bzoj 2324: [ZJOI2011]营救皮卡丘 费用流,最小路径覆盖DAG

题意:

给一个无向图,一开始有k个人在0点。在经过编号小的点之前不能经过编号更大的点,问最少走多少路才能使得至少有1人到达n点。

n<=150


分析:

一开始想的是动态加边和点,然后发现这样子会挂。


其实可以先预处理出f[i,j]表示i走到j且不经过编号大于max(i,j)的点的最短路径。那么这样就变成了一个DAG。现在要求的是要用不超过不相交k条路径覆盖这个DAG且权值和最小。

显然跑上下界费用流是可以的,但这里还有一个更好的办法。

因为路径之间两两不能相交,所以每个点至少且至多要被进入一次,除n以外的点做多出去一次。那么我们可以把一个点拆成两个,一个入点一个出点,1-n的出点向汇点连边,源点向1到n-1的出点连边,然后源点向0连流量为k的边,注意入点不向出点连边。这样就可以保证上述条件了。


一开始连floyd都不记得怎么打了,居然把循环k放在了最里面。。。我可能已经是个废人了。


代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;

const int N=155;

int n,m,k,cnt,s,t,last[N*2],dis[N*2],f[N][N],vis[N*2],pre[N*2],ans;
struct edge{int from,to,c,w,next;}e[N*N*20];
queue<int> que;

int read()
{
	int x=0,f=1;char ch=getchar();
	while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}

void addedge(int u,int v,int c,int w)
{
	e[++cnt].from=u;e[cnt].to=v;e[cnt].c=c;e[cnt].w=w;e[cnt].next=last[u];last[u]=cnt;
	e[++cnt].from=v;e[cnt].to=u;e[cnt].c=0;e[cnt].w=-w;e[cnt].next=last[v];last[v]=cnt;
}

void build()
{
	s=n*2+1;t=n*2+2;cnt=1;
	addedge(s,0,k,0);
	for (int i=1;i<=n;i++) addedge(i,t,1,0);
	for (int i=1;i<n;i++) addedge(s,i+n,1,0);
	memset(f,inf,sizeof(f));
	for (int i=0;i<=n;i++) f[i][i]=0;
	for (int i=1;i<=m;i++)
	{
		int x=read(),y=read(),z=read();
		f[x][y]=f[y][x]=min(f[x][y],z);
	}
	for (int k=0;k<=n;k++)
		for (int i=0;i<=n;i++)
			for (int j=0;j<=n;j++)
				if (k<i||k<j) f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
	for (int i=0;i<n;i++)
		for (int j=i+1;j<=n;j++)
			if (f[i][j]<inf) addedge(i?i+n:i,j,1,f[i][j]);
}

bool spfa()
{
	for (int i=0;i<=t;i++) dis[i]=inf;
	que.push(s);dis[s]=0;vis[s]=1;
	while (!que.empty())
	{
		int u=que.front();que.pop();
		for (int i=last[u];i;i=e[i].next)
			if (e[i].c&&dis[u]+e[i].w<dis[e[i].to])
			{
				dis[e[i].to]=dis[u]+e[i].w;
				pre[e[i].to]=i;
				if (!vis[e[i].to]) vis[e[i].to]=1,que.push(e[i].to);
			}
		vis[u]=0;
	}
	if (dis[t]==inf) return 0;
	else return 1;
}

void mcf()
{
	ans+=dis[t];
	int x=t;
	while (pre[x])
	{
		e[pre[x]].c--;
		e[pre[x]^1].c++;
		x=e[pre[x]].from;
	}
}

int main()
{
	n=read();m=read();k=read();
	build();
	while (spfa()) mcf();
	printf("%d",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值