题意:
给一个无向图,一开始有k个人在0点。在经过编号小的点之前不能经过编号更大的点,问最少走多少路才能使得至少有1人到达n点。
n<=150
分析:
一开始想的是动态加边和点,然后发现这样子会挂。
其实可以先预处理出f[i,j]表示i走到j且不经过编号大于max(i,j)的点的最短路径。那么这样就变成了一个DAG。现在要求的是要用不超过不相交k条路径覆盖这个DAG且权值和最小。
显然跑上下界费用流是可以的,但这里还有一个更好的办法。
因为路径之间两两不能相交,所以每个点至少且至多要被进入一次,除n以外的点做多出去一次。那么我们可以把一个点拆成两个,一个入点一个出点,1-n的出点向汇点连边,源点向1到n-1的出点连边,然后源点向0连流量为k的边,注意入点不向出点连边。这样就可以保证上述条件了。
一开始连floyd都不记得怎么打了,居然把循环k放在了最里面。。。我可能已经是个废人了。
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
const int N=155;
int n,m,k,cnt,s,t,last[N*2],dis[N*2],f[N][N],vis[N*2],pre[N*2],ans;
struct edge{int from,to,c,w,next;}e[N*N*20];
queue<int> que;
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void addedge(int u,int v,int c,int w)
{
e[++cnt].from=u;e[cnt].to=v;e[cnt].c=c;e[cnt].w=w;e[cnt].next=last[u];last[u]=cnt;
e[++cnt].from=v;e[cnt].to=u;e[cnt].c=0;e[cnt].w=-w;e[cnt].next=last[v];last[v]=cnt;
}
void build()
{
s=n*2+1;t=n*2+2;cnt=1;
addedge(s,0,k,0);
for (int i=1;i<=n;i++) addedge(i,t,1,0);
for (int i=1;i<n;i++) addedge(s,i+n,1,0);
memset(f,inf,sizeof(f));
for (int i=0;i<=n;i++) f[i][i]=0;
for (int i=1;i<=m;i++)
{
int x=read(),y=read(),z=read();
f[x][y]=f[y][x]=min(f[x][y],z);
}
for (int k=0;k<=n;k++)
for (int i=0;i<=n;i++)
for (int j=0;j<=n;j++)
if (k<i||k<j) f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
for (int i=0;i<n;i++)
for (int j=i+1;j<=n;j++)
if (f[i][j]<inf) addedge(i?i+n:i,j,1,f[i][j]);
}
bool spfa()
{
for (int i=0;i<=t;i++) dis[i]=inf;
que.push(s);dis[s]=0;vis[s]=1;
while (!que.empty())
{
int u=que.front();que.pop();
for (int i=last[u];i;i=e[i].next)
if (e[i].c&&dis[u]+e[i].w<dis[e[i].to])
{
dis[e[i].to]=dis[u]+e[i].w;
pre[e[i].to]=i;
if (!vis[e[i].to]) vis[e[i].to]=1,que.push(e[i].to);
}
vis[u]=0;
}
if (dis[t]==inf) return 0;
else return 1;
}
void mcf()
{
ans+=dis[t];
int x=t;
while (pre[x])
{
e[pre[x]].c--;
e[pre[x]^1].c++;
x=e[pre[x]].from;
}
}
int main()
{
n=read();m=read();k=read();
build();
while (spfa()) mcf();
printf("%d",ans);
return 0;
}