bzoj 4724: [POI2017]Podzielno 数学

题意

B进制数,每个数字i(i=0,1,…,B-1)有a[i]个。你要用这些数字组成一个最大的B进制数X(不能有前导零,不需要
用完所有数字),使得X是B-1的倍数。q次询问,每次询问X在B进制下的第k位数字是什么(最低位是第0位)。
B(2<=B<=10^6),q(1<=q<=10^5)。k(0<=k<=10^18)

分析

有一个结论,就是一个数能被B-1整除当且仅当这个数在B进制下的每一位的和能被B-1整除。
证明:
当一个数的某一位+1时,若进位,则这一位要减去B-1,下一位要+1,则总的贡献是+1.
当一个数的某一位-1时,若退位,则这一位要加上B-1,下一位要-1,则总的贡献是-1.
于是当一个数加上B-1时,它在B进制下每一位的总和对B-1取模的值是不变的。

那么对于这题,由于要最大所以肯定取最多的数。由于a[i]>=1,所以我们只要删掉一个数即可使得其总和为B-1的倍数。
询问的话只要二分前缀和搞一下就好了。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=1000005;

int B,q;
LL a[N];

LL read()
{
    LL x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

int main()
{
    B=read();q=read();
    int s=0;
    for (int i=0;i<B;i++) a[i]=read(),s=(s+(LL)i*a[i]%(B-1))%(B-1);
    if (s) a[s]--;
    for (int i=1;i<B;i++) a[i]+=a[i-1];
    while (q--)
    {
        LL x=read()+1;
        int l=0,r=B-1;
        while (l<=r)
        {
            int mid=(l+r)/2;
            if (a[mid]>=x) r=mid-1;
            else l=mid+1;
        }
        if (r==B-1) puts("-1");
        else printf("%d\n",r+1);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值