题意
B进制数,每个数字i(i=0,1,…,B-1)有a[i]个。你要用这些数字组成一个最大的B进制数X(不能有前导零,不需要
用完所有数字),使得X是B-1的倍数。q次询问,每次询问X在B进制下的第k位数字是什么(最低位是第0位)。
B(2<=B<=10^6),q(1<=q<=10^5)。k(0<=k<=10^18)
分析
有一个结论,就是一个数能被B-1整除当且仅当这个数在B进制下的每一位的和能被B-1整除。
证明:
当一个数的某一位+1时,若进位,则这一位要减去B-1,下一位要+1,则总的贡献是+1.
当一个数的某一位-1时,若退位,则这一位要加上B-1,下一位要-1,则总的贡献是-1.
于是当一个数加上B-1时,它在B进制下每一位的总和对B-1取模的值是不变的。
那么对于这题,由于要最大所以肯定取最多的数。由于a[i]>=1,所以我们只要删掉一个数即可使得其总和为B-1的倍数。
询问的话只要二分前缀和搞一下就好了。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N=1000005;
int B,q;
LL a[N];
LL read()
{
LL x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int main()
{
B=read();q=read();
int s=0;
for (int i=0;i<B;i++) a[i]=read(),s=(s+(LL)i*a[i]%(B-1))%(B-1);
if (s) a[s]--;
for (int i=1;i<B;i++) a[i]+=a[i-1];
while (q--)
{
LL x=read()+1;
int l=0,r=B-1;
while (l<=r)
{
int mid=(l+r)/2;
if (a[mid]>=x) r=mid-1;
else l=mid+1;
}
if (r==B-1) puts("-1");
else printf("%d\n",r+1);
}
return 0;
}