bzoj 4144: [AMPPZ2014]Petrol spfa+最小生成树

题意

给定一个n个点、m条边的带权无向图,其中有s个点是加油站。
每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满。
q次询问,每次给出x,y,b,表示出发点是x,终点是y,油量上限为b,且保证x点和y点都是加油站,请回答能否从x走到y。
2<=s<=n<=200000,1<=m<=200000,1<=q<=200000

分析

感觉上比较巧妙的一道题(大爷们都说这是水题,可能是因为我太菜了)。

显然有用的点只有加油站,其余的点是可以去掉的。如果我们可以求出加油站两两的最短距离,设为dist[i,j],把这看做一条边,然后做最小生成树,后面就怎么做都可以了。
问题在于怎么求出两两加油站之间最短距离。
设from[i]表示离点i最近的加油站的编号,dis[i]表示i到from[i]的最短距离。那么A到B的最短路径设为p1,p2,p3…pk,那么必然有from[p1]=from[p2]=…=from[pw]=A,from[pw+1]=…=from[pk]=B。因为如果中间有一个点满足from[pt]=C,那么我一定可以先到达这个点,然后从这个点到C再走回来,这样显然是更优的。
所以我们可以对于原图中的每一条边(u,v,w),建一条新边(from[u],from[v],dis[u]+dis[v]+w),然后做最小生成树即可。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;

const int N=200005;
const int inf=(int)1e9;

int n,s,m,Q,cnt,last[N],dis[N],from[N],c[N],a1,f[N];
bool vis[N],ans[N];
struct data{int x,y,w,id;}a[N],q[N];
struct edge{int to,next,w;}e[N*2];
queue<int> que;

int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

void addedge(int u,int v,int w)
{
    e[++cnt].to=v;e[cnt].w=w;e[cnt].next=last[u];last[u]=cnt;
    e[++cnt].to=u;e[cnt].w=w;e[cnt].next=last[v];last[v]=cnt;
}

void spfa()
{
    for (int i=1;i<=n;i++) dis[i]=inf;
    for (int i=1;i<=s;i++) que.push(c[i]),dis[c[i]]=0,vis[c[i]]=1,from[c[i]]=c[i];
    while (!que.empty())
    {
        int u=que.front();que.pop();
        for (int i=last[u];i;i=e[i].next)
            if (dis[u]+e[i].w<dis[e[i].to])
            {
                dis[e[i].to]=dis[u]+e[i].w;
                from[e[i].to]=from[u];
                if (!vis[e[i].to]) vis[e[i].to]=1,que.push(e[i].to);
            }
        vis[u]=0;
    }
}

bool cmp(data a,data b)
{
    return a.w<b.w;
}

int find(int x)
{
    if (f[x]==x) return x;
    return f[x]=find(f[x]);
}

int main()
{
    n=read();s=read();m=read();
    for (int i=1;i<=s;i++) c[i]=read();
    for (int i=1;i<=m;i++)
    {
        int x=read(),y=read(),z=read();
        addedge(x,y,z);
    }
    spfa();
    for (int i=1;i<=cnt;i+=2)
    {
        int x=e[i+1].to,y=e[i].to;
        if (from[x]!=from[y]) a[++a1].x=from[x],a[a1].y=from[y],a[a1].w=e[i].w+dis[x]+dis[y];
    }
    sort(a+1,a+a1+1,cmp);
    for (int i=1;i<=n;i++) f[i]=i;
    Q=read();
    for (int i=1;i<=Q;i++) q[i].x=read(),q[i].y=read(),q[i].w=read(),q[i].id=i;
    sort(q+1,q+Q+1,cmp);
    for (int i=1,l=1;i<=Q;i++)
    {
        while (l<=a1&&a[l].w<=q[i].w)
        {
            if (find(a[l].x)!=find(a[l].y)) f[find(a[l].x)]=find(a[l].y);
            l++;
        }
        if (find(q[i].x)==find(q[i].y)) ans[q[i].id]=0;
        else ans[q[i].id]=1;
    }
    for (int i=1;i<=Q;i++)
        if (!ans[i]) puts("TAK");
        else puts("NIE");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值