题意
给出n个区间,要求你选出最多的区间且区间之间两两不相交。并输出一种方案使得其编号字典序最小。
n<=200000,l,r<=10^9
分析
如果不要求字典序最小的话就是一道普及贪心题了。问题在于如何找到字典序最小的方案。
我一开始想的是按编号从小到大枚举区间,若加上这个区间后可选的区间总数不会减少,那么这个区间就是可选的。设区间为[l,r],get_ans(l,r)表示l到r这段时间最多可以放下多少个区间。也就是说如果get_ans(左端点,l-1)+get_ans(r+1,右端点)+1 < get_ans(左端点,右端点)的话,这个区间就是不能选的。
问题在于如何实现get_ans()。
这个可以用倍增来实现,先把包含了其他区间的区间删掉,求出f[i,j]表示从第i个区间开始选了2^j个区间后会到达哪个区间。然后就可以大力倍增来get_ans了。
再用一个set来维护还没被覆盖的区间即可。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<set>
#include<cmath>
using namespace std;
const int N=200005;
const int inf=2000000000;
int n,m,bin[25],rmq[N][25],lg;
pair<int,int> a[N],b[N];
set<pair<int,int> > w;
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int get_nx(int x)
{
int l=1,r=m;
while (l<=r)
{
int mid=(l+r)/2;
if (b[mid].first>=x) r=mid-1;
else l=mid+1;
}
return r==m?0:r+1;
}
void prework()
{
for (int i=1;i<=n;i++) b[i]=a[i],b[i].second*=-1;
sort(b+1,b+n+1);
for (int i=1;i<=n;i++) b[i].second*=-1;
int mn=inf;m=n;
for (int i=n;i>=1;i--)
if (b[i].second>=mn) m--,b[i].first=inf;
else mn=b[i].second;
sort(b+1,b+n+1);
for (int i=1;i<=m;i++) rmq[i][0]=get_nx(b[i].second+1);
lg=log(m)/log(2);
for (int j=1;j<=lg;j++)
for (int i=1;i+bin[j]-1<=m;i++)
rmq[i][j]=rmq[rmq[i][j-1]][j-1];
}
int get_ans(int l,int r)
{
int x=get_nx(l),ans=0;
if (l>r||!x) return 0;
for (int i=lg;i>=0;i--)
if (rmq[x][i]&&b[rmq[x][i]].second<=r) ans+=bin[i],x=rmq[x][i];
if (b[x].second<=r) ans++;
return ans;
}
int main()
{
bin[0]=1;
for (int i=1;i<=20;i++) bin[i]=bin[i-1]*2;
n=read();
int mx=0;
for (int i=1;i<=n;i++) a[i].first=read(),a[i].second=read(),mx=max(mx,a[i].second);
prework();
w.insert(make_pair(1,mx));
int cnt=0,ans=get_ans(1,mx);
printf("%d\n",ans);
for (int i=1;i<=n;i++)
{
pair<int,int> u=a[i];u.first++;
set<pair<int,int> >::iterator it=w.lower_bound(u);
if (it==w.begin()) continue;
it--;
int l=(*it).first,r=(*it).second;
if (l>a[i].first||r<a[i].second||get_ans(l,a[i].first-1)+get_ans(a[i].second+1,r)+1<get_ans(l,r)) continue;
printf("%d",i);cnt++;if (cnt<ans) putchar(' ');
w.erase(it);
if (l<a[i].first) w.insert(make_pair(l,a[i].first-1));
if (r>a[i].second) w.insert(make_pair(a[i].second+1,r));
}
return 0;
}
博客介绍了如何解决在不超过200000个区间中,选取最多且不相交的区间问题,要求选出的方案字典序最小。分析部分提到,如果不考虑字典序,问题可以通过贪心解决,但关键在于找到字典序最小的解。博主提出使用倍增算法来实现,并结合set数据结构动态维护未被覆盖的区间,以高效地计算每个区间加入后的最优解。
2378

被折叠的 条评论
为什么被折叠?



