Codeforces 700E Cool Slogans 后缀自动机+可持久化线段树+dp

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_33229466/article/details/79140428

题意

给你一个长度为n的字符串S,求最长的一个字符串序列a[1..k]满足序列中的每一个字符串都是S的子串,且对于任意的1<i<=k都有a[i1]a[i]中至少出现两次。两次出现允许重叠。
问最大满足条件的k是多少。
n<=200000

分析

一开始也想到了类似的做法,但发现有点问题,于是就去膜lyc大爷的标。
首先想到可以dp,设f[str]表示字符串str作为a[k]时的最大的k。可以通过枚举str的一个后缀来转移。
我们可以先把后缀自动机建出来。
这里有一个比较重要性质:对于sam上的一个节点,他代表了若干个字符串。看上去我们每次找长度最小的串来转移是最优的,因为长度越小其可能的出现次数就越多。但由于sam同一个节点上的字符串,他们的right集是相同的,所以如果可以选某一个短一点的串作为转移点,也一定可以选最长的串。且f[最长串]必然不会小于f[较短的串]。所以对于一个节点,我们可以只处理其最长串的f值。
那么我们就可以愉快地在parents树上dp了。
我们设f[x]表示x到根这条链上选若干个字符串出来组成a数组时的最大值,pos[x]表示a[f[x]]具体是哪一个位置。
转移的时候,我们要判断f[x]是否能由f[pos[fa[x]]]转移过来,也就是pos[fa[x]]所代表的字符串在x中是否出现了两次。这个可以通过预处理right集的可持久化线段树来判断。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=400005;

int n,ch[N][26],mx[N],fa[N],b[N],c[N],cnt,sz,rt[N],dp[N],last,id[N],pos[N];
char s[N];
struct tree{int l,r;}t[N*50];

void extend(int i,int x)
{
    int p,q,np,nq;
    p=last;last=np=++cnt;mx[np]=mx[p]+1;id[np]=i;
    for (;p&&!ch[p][x];p=fa[p]) ch[p][x]=np;
    if (!p) fa[np]=1;
    else
    {
        q=ch[p][x];
        if (mx[q]==mx[p]+1) fa[np]=q;
        else
        {
            nq=++cnt;mx[nq]=mx[p]+1;id[nq]=i;
            memcpy(ch[nq],ch[q],sizeof(ch[q]));
            fa[nq]=fa[q];
            fa[q]=fa[np]=nq;
            for (;ch[p][x]==q;p=fa[p]) ch[p][x]=nq;
        }
    }
}

void ins(int &d,int l,int r,int x)
{
    if (!d) d=++sz;
    if (l==r) return;
    int mid=(l+r)/2;
    if (x<=mid) ins(t[d].l,l,mid,x);
    else ins(t[d].r,mid+1,r,x);
}

int merge(int x,int y)
{
    if (!x||!y) return x+y;
    int d=++sz;
    t[d].l=merge(t[x].l,t[y].l);
    t[d].r=merge(t[x].r,t[y].r);
    return d;
}

bool query(int d,int l,int r,int x,int y)
{
    if (!d) return 0;
    if (l==x&&r==y) return 1;
    int mid=(l+r)/2;
    if (x<=mid&&query(t[d].l,l,mid,x,min(y,mid))) return 1;
    if (y>mid&&query(t[d].r,mid+1,r,max(x,mid+1),y)) return 1;
    return 0;
}

void build()
{
    for (int i=1;i<=cnt;i++) b[mx[i]]++;
    for (int i=1;i<=cnt;i++) b[i]+=b[i-1];
    for (int i=cnt;i>=1;i--) c[b[mx[i]]--]=i;
    for (int i=cnt;i>=2;i--)
    {
        int x=c[i];
        ins(rt[x],1,n,id[x]);
        rt[fa[x]]=merge(rt[fa[x]],rt[x]);
    }
}

int main()
{
    scanf("%d%s",&n,s+1);
    last=cnt=1;
    for (int i=1;i<=n;i++) extend(i,s[i]-'a');
    build();
    int ans=1;
    for (int i=2;i<=cnt;i++)
    {
        int x=c[i];
        if (fa[x]==1) dp[x]=1,pos[x]=x;
        else if (query(rt[pos[fa[x]]],1,n,id[x]-mx[x]+mx[pos[fa[x]]],id[x]-1)) dp[x]=dp[fa[x]]+1,pos[x]=x;
        else dp[x]=dp[fa[x]],pos[x]=pos[fa[x]];
        ans=max(ans,dp[x]);
    }
    printf("%d",ans);
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页