# 题意

n<=100000,m,k<=10

# 分析

$f\left(x\right)$$f(x)$表示在一堆花处恰好操作x轮后结束的方案。

$f\left(x\right)=\sum _{i=1}^{x}\left(-1{\right)}^{x-i}{C}_{x}^{i}\prod _{j=1}^{m}{C}_{{s}_{j}+i-1}^{i-1}$

$g\left(x\right)=\prod _{j=1}^{m}{C}_{{s}_{j}+x-1}^{x-1}$

$f\left(x\right)=\sum _{i=1}^{x}\left(-1{\right)}^{x-i}{C}_{x}^{i}\ast g\left(i\right)$

# 代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=100005;
const int MOD=985661441;
const int g=985661438;

int n,m,k,ny[N*2],jc[N*2],f[N],s[15],L,rev[N*4],a[N*4],b[N*4];

int ksm(int x,int y)
{
int ans=1;
while (y)
{
if (y&1) ans=(LL)ans*x%MOD;
x=(LL)x*x%MOD;y>>=1;
}
return ans;
}

int C(int n,int m)
{
return (LL)jc[n]*ny[m]%MOD*ny[n-m]%MOD;
}

void updata(int &x,int y)
{
x+=y;x-=x>=MOD?MOD:0;
}

void NTT(int *a,int f)
{
for (int i=0;i<L;i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=1;i<L;i<<=1)
{
int wn=ksm(g,f==1?(MOD-1)/i/2:MOD-1-(MOD-1)/i/2);
for (int j=0;j<L;j+=(i<<1))
{
int w=1;
for (int k=0;k<i;k++)
{
int u=a[j+k],v=(LL)a[j+k+i]*w%MOD;
a[j+k]=u+v;a[j+k]-=a[j+k]>=MOD?MOD:0;
a[j+k+i]=u+MOD-v;a[j+k+i]-=a[j+k+i]>=MOD?MOD:0;
w=(LL)w*wn%MOD;
}
}
}
int ny=ksm(L,MOD-2);
if (f==-1) for (int i=0;i<L;i++) a[i]=(LL)a[i]*ny%MOD;
}

int main()
{
jc[0]=jc[1]=ny[0]=ny[1]=1;
for (int i=2;i<=200000;i++) jc[i]=(LL)jc[i-1]*i%MOD,ny[i]=(LL)(MOD-MOD/i)*ny[MOD%i]%MOD;
for (int i=2;i<=200000;i++) ny[i]=(LL)ny[i-1]*ny[i]%MOD;
int T=0;
while (scanf("%d%d",&m,&k)!=EOF)
{
T++;printf("Case #%d: ",T);
n=0;
for (int i=1,x;i<=m;i++) scanf("%d%d",&x,&s[i]),n+=s[i];
int lg=0;
for (L=1;L<=n*2;L<<=1,lg++);
for (int i=0;i<L;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1)),a[i]=b[i]=0;
for (int i=0;i<=n;i++) a[i]=(i&1)?MOD-ny[i]:ny[i];
for (int i=1;i<=n;i++)
{
b[i]=ny[i];
for (int j=1;j<=m;j++) b[i]=(LL)b[i]*C(s[j]+i-1,i-1)%MOD;
}
NTT(a,1);NTT(b,1);
for (int i=0;i<L;i++) a[i]=(LL)a[i]*b[i]%MOD;
NTT(a,-1);
for (int i=0;i<=n;i++) f[i]=(LL)a[i]*jc[i]%MOD;
f[n+1]=0;
for (int i=1;i<=k;i++)
{
int ans=0;
for (int j=1;j<=n;j++)
updata(ans,(LL)ksm(f[j],k-i+1)*ksm(f[j+1],i-1)%MOD);
printf("%d",ans);
if (i<k) putchar(' ');
else puts("");
}
}
return 0;
}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120