hdu 6036 Division Game 容斥原理+NTT

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_33229466/article/details/79379587

题意

有k堆花,编号为1到k-1,每堆花都是完全一样的且包含n朵花,分成m种颜色,每种颜色有si朵花。现在要进行操作,第i轮操作可以在第(i-1) mod k堆花中取走任意朵。当有一堆花被取完后游戏结束。问对于每一堆花,有多少种不同的操作可能使得游戏在该处结束。NTT模数。
n<=100000,m,k<=10

分析

f(x)表示在一堆花处恰好操作x轮后结束的方案。
容斥一下不难得到

f(x)=i=1x(1)xiCxij=1mCsj+i1i1

g(x)=j=1mCsj+x1x1

那么就有
f(x)=i=1x(1)xiCxig(i)

把组合数展开一下发现是个卷积的形式,用NTT优化即可。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=100005;
const int MOD=985661441;
const int g=985661438;

int n,m,k,ny[N*2],jc[N*2],f[N],s[15],L,rev[N*4],a[N*4],b[N*4];

int ksm(int x,int y)
{
    int ans=1;
    while (y)
    {
        if (y&1) ans=(LL)ans*x%MOD;
        x=(LL)x*x%MOD;y>>=1;
    }
    return ans;
}

int C(int n,int m)
{
    return (LL)jc[n]*ny[m]%MOD*ny[n-m]%MOD;
}

void updata(int &x,int y)
{
    x+=y;x-=x>=MOD?MOD:0;
}

void NTT(int *a,int f)
{
    for (int i=0;i<L;i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
    for (int i=1;i<L;i<<=1)
    {
        int wn=ksm(g,f==1?(MOD-1)/i/2:MOD-1-(MOD-1)/i/2);
        for (int j=0;j<L;j+=(i<<1))
        {
            int w=1;
            for (int k=0;k<i;k++)
            {
                int u=a[j+k],v=(LL)a[j+k+i]*w%MOD;
                a[j+k]=u+v;a[j+k]-=a[j+k]>=MOD?MOD:0;
                a[j+k+i]=u+MOD-v;a[j+k+i]-=a[j+k+i]>=MOD?MOD:0;
                w=(LL)w*wn%MOD;
            }
        }
    }
    int ny=ksm(L,MOD-2);
    if (f==-1) for (int i=0;i<L;i++) a[i]=(LL)a[i]*ny%MOD;
}

int main()
{
    jc[0]=jc[1]=ny[0]=ny[1]=1;
    for (int i=2;i<=200000;i++) jc[i]=(LL)jc[i-1]*i%MOD,ny[i]=(LL)(MOD-MOD/i)*ny[MOD%i]%MOD;
    for (int i=2;i<=200000;i++) ny[i]=(LL)ny[i-1]*ny[i]%MOD;
    int T=0;
    while (scanf("%d%d",&m,&k)!=EOF)
    {
        T++;printf("Case #%d: ",T);
        n=0;
        for (int i=1,x;i<=m;i++) scanf("%d%d",&x,&s[i]),n+=s[i];
        int lg=0;
        for (L=1;L<=n*2;L<<=1,lg++);
        for (int i=0;i<L;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1)),a[i]=b[i]=0;
        for (int i=0;i<=n;i++) a[i]=(i&1)?MOD-ny[i]:ny[i];
        for (int i=1;i<=n;i++)
        {
            b[i]=ny[i];
            for (int j=1;j<=m;j++) b[i]=(LL)b[i]*C(s[j]+i-1,i-1)%MOD;
        }
        NTT(a,1);NTT(b,1);
        for (int i=0;i<L;i++) a[i]=(LL)a[i]*b[i]%MOD;
        NTT(a,-1);
        for (int i=0;i<=n;i++) f[i]=(LL)a[i]*jc[i]%MOD;
        f[n+1]=0;
        for (int i=1;i<=k;i++)
        {
            int ans=0;
            for (int j=1;j<=n;j++)
                updata(ans,(LL)ksm(f[j],k-i+1)*ksm(f[j+1],i-1)%MOD);
            printf("%d",ans);
            if (i<k) putchar(' ');
            else puts("");
        }
    }
    return 0;
}
阅读更多
换一批

没有更多推荐了,返回首页