题意
给定一个长度为N的数组A[],求有多少对i, j, k(1<=i < j < k<=N)满足A[k]-A[j]=A[j]-A[i]。
N<=100000,A[i]<=30000
分析
把式子画一下就变成了A[j]*2=A[k]+A[i],一个很显然的想法就是枚举j然后fft,复杂度是O(NVlogV),显然不能接受。
考虑分块,设块的大小为B,我们可以枚举每一块,然后分两种情况,一种是i和k都不在块内,这时可以用一次fft来统计完整块的贡献;另一种是i和k至少有一个在块内,我们可以枚举j个其中一个,通过O(B^2)来计算块内的贡献。
这样做的复杂度是O(N/B*VlogV+B^2),解一下方程可以得到B大概等于3560左右,然后就可以跑过去了。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int B=3560;
const double pi=acos(-1);
const int N=100005;
const int M=30005;
int n,w[N],pre[M*2],suf[M*2],rev[M*4],V,L,bel[N],sta[M],end[M];
struct com
{
double x,y;
com operator + (const com &a) const {return (com){x+a.x,y+a.y};}
com operator - (const com &a) const {return (com){x-a.x,y-a.y};}
com operator * (const com &a) const {return (com){x*a.x-y*a.y,x*a.y+y*a.x};}
com operator / (const double &a) const {return (com){x/a,y/a};}
}a[M*4],b[M*4];
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void fft(com *a,int f)
{
for (int i=0;i<L;i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=1;i<L;i<<=1)
{
com wn=(com){cos(pi/i),f*sin(pi/i)};
for (int j=0;j<L;j+=(i<<1))
{
com w=(com){1,0};
for (int k=0;k<i;k++)
{
com u=a[j+k],v=a[j+k+i]*w;
a[j+k]=u+v;a[j+k+i]=u-v;
w=w*wn;
}
}
}
if (f==-1) for (int i=0;i<L;i++) a[i]=a[i]/L;
}
int main()
{
n=read();
for (int i=1;i<=n;i++)
{
w[i]=read();bel[i]=(i+B-1)/B;suf[w[i]]++;V=max(V,w[i]);
if (!sta[bel[i]]) sta[bel[i]]=i;
end[bel[i]]=i;
}
int lg=0;
for (L=1;L<=V*2;L<<=1,lg++);
for (int i=0;i<L;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1));
LL ans=0;
for (int i=1;i<=bel[n];i++)
{
int l=sta[i],r=end[i];
for (int j=l;j<=r;j++) suf[w[j]]--;
for (int j=0;j<L;j++) a[j]=b[j]=(com){0,0};
for (int j=0;j<=V;j++) a[j]=(com){pre[j],0},b[j]=(com){suf[j],0};
fft(a,1);fft(b,1);
for (int j=0;j<L;j++) a[j]=a[j]*b[j];
fft(a,-1);
for (int j=l;j<=r;j++) ans+=(LL)(a[w[j]*2].x+0.1);
for (int j=l;j<=r;j++)
{
for (int k=j+1;k<=r;k++) ans+=(w[j]*2-w[k]>=0)?pre[w[j]*2-w[k]]:0;
pre[w[j]]++;
}
for (int j=l+1;j<=r;j++)
for (int k=l;k<j;k++)
if (w[j]*2-w[k]>=0) ans+=suf[w[j]*2-w[k]];
}
printf("%lld",ans);
return 0;
}