题意
算术天才⑨非常喜欢和等差数列玩耍。
有一天,他给了你一个长度为n的序列,其中第i个数为a[i]。
他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能否形成公差为k的等差数列。
当然,他还会不断修改其中的某一项。
为了不被他鄙视,你必须要快速并正确地回答完所有问题。
注意:只有一个数的数列也是等差数列。
1<=n,m<=300000,0<=a[i]<=10^9,1<=l<=r<=n,0<=k<=10^9
分析
考虑如何判断一个序列是否是公差为k的等差数列:
首先最小值和最大值必须满足
序列中的数必须两两不相同
序列中任意两个相邻的数差的gcd必须恰好等于k。
最大值和最小值可以线段树直接维护。判是否存在相等的数,可以对每种权值维护一个set,求出ls[i]表示i前面第一个和a[i]相同的数,然后维护区间ls的最大值。gcd也可以直接维护。
记得特判l=r或k=0的情况。
这题貌似也可以对等差数列进行哈希,就是维护每个数的和,每个数的平方和之类的。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
#include<set>
#define MIN(x,y) x=min(x,y)
#define MAX(x,y) x=max(x,y)
using namespace std;
typedef long long LL;
const int N=300005;
const int inf=1000000000;
int n,m,sz,a[N],mn,mx,mx_ls;
map<int,int> ma;
set<int> se[N*2];
struct tree{int d,mx,mn,mx_ls;}t[N*4];
set<int>::iterator it;
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int gcd(int x,int y)
{
if (!y) return x;
else return gcd(y,x%y);
}
void modify_a(int d,int l,int r,int x,int y)
{
if (l==r) {t[d].mn=t[d].mx=y;return;}
int mid=(l+r)/2;
if (x<=mid) modify_a(d*2,l,mid,x,y);
else modify_a(d*2+1,mid+1,r,x,y);
t[d].mn=min(t[d*2].mn,t[d*2+1].mn);
t[d].mx=max(t[d*2].mx,t[d*2+1].mx);
}
void modify_ls(int d,int l,int r,int x,int y)
{
if (l==r) {t[d].mx_ls=y;return;}
int mid=(l+r)/2;
if (x<=mid) modify_ls(d*2,l,mid,x,y);
else modify_ls(d*2+1,mid+1,r,x,y);
t[d].mx_ls=max(t[d*2].mx_ls,t[d*2+1].mx_ls);
}
void modify_d(int d,int l,int r,int x,int y)
{
if (l==r) {t[d].d=y;return;}
int mid=(l+r)/2;
if (x<=mid) modify_d(d*2,l,mid,x,y);
else modify_d(d*2+1,mid+1,r,x,y);
t[d].d=gcd(t[d*2].d,t[d*2+1].d);
}
void query(int d,int l,int r,int x,int y)
{
if (l==x&&r==y) {MIN(mn,t[d].mn);MAX(mx,t[d].mx);MAX(mx_ls,t[d].mx_ls);return;}
int mid=(l+r)/2;
if (y<=mid) query(d*2,l,mid,x,y);
else if (x>mid) query(d*2+1,mid+1,r,x,y);
else query(d*2,l,mid,x,mid),query(d*2+1,mid+1,r,mid+1,y);
}
int query_d(int d,int l,int r,int x,int y)
{
if (l==x&&r==y) return t[d].d;
int mid=(l+r)/2;
if (y<=mid) return query_d(d*2,l,mid,x,y);
else if (x>mid) return query_d(d*2+1,mid+1,r,x,y);
else return gcd(query_d(d*2,l,mid,x,mid),query_d(d*2+1,mid+1,r,mid+1,y));
}
int main()
{
n=read();m=read();
for (int i=1;i<=n;i++)
{
a[i]=read();
modify_a(1,1,n,i,a[i]);modify_d(1,1,n,i,abs(a[i]-a[i-1]));
if (!ma[a[i]]) ma[a[i]]=++sz;
int x=ma[a[i]];
if (se[x].size()) it=se[x].end(),it--,modify_ls(1,1,n,i,*it);
se[x].insert(i);
}
int ans=0;
while (m--)
{
int op=read();
if (op==1)
{
int x=read()^ans,y=read()^ans;
modify_a(1,1,n,x,y);modify_d(1,1,n,x,abs(y-a[x-1]));modify_d(1,1,n,x+1,abs(a[x+1]-y));
int id=ma[a[x]];se[id].erase(x);it=se[id].lower_bound(x);
if (it!=se[id].end())
{
int q=*it;
if (it!=se[id].begin()) it--,modify_ls(1,1,n,q,*it);
else modify_ls(1,1,n,q,0);
}
if (!ma[y]) ma[y]=++sz;
a[x]=y;id=ma[y];it=se[id].lower_bound(x);
if (it!=se[id].end()) modify_ls(1,1,n,*it,x);
if (it!=se[id].begin()) it--,modify_ls(1,1,n,x,*it);
else modify_ls(1,1,n,x,0);
se[id].insert(x);
}
else
{
int l=read()^ans,r=read()^ans,k=read()^ans;
if (l==r) {puts("Yes");ans++;continue;}
mx=0;mn=inf;mx_ls=0;query(1,1,n,l,r);int d=query_d(1,1,n,l+1,r);
if (!k) {puts(mn==mx?"Yes":"No");ans+=mn==mx;continue;}
if (mx_ls>=l||(LL)mx!=(LL)mn+(LL)k*(r-l)||d!=k) puts("No");
else puts("Yes"),ans++;
}
}
return 0;
}
本文介绍了一种算法,用于高效处理等差数列的查询与更新操作,包括判断区间内元素是否构成特定公差的等差数列,并允许对序列元素进行修改。
1928

被折叠的 条评论
为什么被折叠?



