题意
给一棵n个点的树以及m条额外的双向边
q次询问,统计满足以下条件的u到v的路径:
恰经过一条额外的边
不经过树上u到v的路径上的边
n,m<=100000,q<=500000
分析
一道无聊题居然调了我一个晚上,还卡常简直丧心病狂。
注意这题只走树边也算一种方案,所以只要把答案+1就好了。
把dfs序搞出来后就变成了每次询问一个矩形中的点数,只要离线树状数组一下就好了。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=100005;
int n,cnt,last[N],dfn[N],mx[N],tim,tot,c[N],m,ans[N*5],fa[N][18],dep[N],stack[20];
struct data{int x,y,id,op,c,y1,y2;}q[N*30];
struct edge{int to,next;}e[N*2];
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void pri(int x)
{
if (!x) {puts("0");return;}
int top=0;
while (x) stack[++top]=x%10,x/=10;
while (top) putchar(stack[top]+'0'),top--;
puts("");
}
void addedge(int u,int v)
{
e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
e[++cnt].to=u;e[cnt].next=last[v];last[v]=cnt;
}
void dfs(int x)
{
dfn[x]=++tim;dep[x]=dep[fa[x][0]]+1;
for (int i=1;i<=16;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
for (int i=last[x];i;i=e[i].next)
if (e[i].to!=fa[x][0]) fa[e[i].to][0]=x,dfs(e[i].to);
mx[x]=tim;
}
int get(int x,int y)
{
for (int i=16;i>=0;i--)
if (dep[fa[x][i]]>dep[y]) x=fa[x][i];
return x;
}
void addmat(int x1,int x2,int y1,int y2,int id)
{
q[++tot].op=1;q[tot].id=id;q[tot].c=1;q[tot].x=x2;q[tot].y1=y1-1;q[tot].y2=y2;
q[++tot].op=1;q[tot].id=id;q[tot].c=-1;q[tot].x=x1-1;q[tot].y1=y1-1;q[tot].y2=y2;
}
inline bool cmp(data a,data b)
{
return a.x<b.x||a.x==b.x&&a.op<b.op;
}
inline void ins(int x,int y)
{
while (x<=n) c[x]+=y,x+=x&(-x);
}
inline int query(int x)
{
int ans=0;
while (x) ans+=c[x],x-=x&(-x);
return ans;
}
int main()
{
n=read();
for (int i=1;i<n;i++)
{
int x=read(),y=read();
addedge(x,y);
}
dfs(1);
m=read();
for (int i=1;i<=m;i++)
{
int x=read(),y=read();
if (dfn[x]>dfn[y]) swap(x,y);
q[++tot].op=0;q[tot].x=dfn[x];q[tot].y=dfn[y];
}
m=read();
for (int i=1;i<=m;i++)
{
int x=read(),y=read();
if (dfn[x]>dfn[y]) swap(x,y);
if (dfn[y]<=mx[x])
{
int z=get(y,x);
if (dfn[z]>1) addmat(1,dfn[z]-1,dfn[y],mx[y],i);
if (mx[z]<n) addmat(dfn[y],mx[y],mx[z]+1,n,i);
}
else addmat(dfn[x],mx[x],dfn[y],mx[y],i);
}
sort(q+1,q+tot+1,cmp);
for (int i=1;i<=tot;i++)
if (!q[i].op) ins(q[i].y,1);
else ans[q[i].id]+=q[i].c*(query(q[i].y2)-query(q[i].y1));
for (int i=1;i<=m;i++) pri(ans[i]+1);
return 0;
}