bzoj 5157: [Tjoi2014]上升子序列 dp+可持久化线段树

题意

给出一个序列,问序列中有多少个本质不同的上升子序列。
n<=100000 n <= 100000

分析

我的方法好像比较复杂。。。
设f[i]表示以i为结尾且之前没有出现过的上升子序列数量。
考虑转移,设ls[i]表示上一个与i权值相同的位置,那么 f[i]=i1j=ls[i]+1f[j][a[j]<a[i]] f [ i ] = ∑ j = l s [ i ] + 1 i − 1 f [ j ] ∗ [ a [ j ] < a [ i ] ]
显然可以用可持久化线段树来优化。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=100005;
const int MOD=1000000007;

int n,a[N],w[N],tot,rt[N],sz,ls[N],f[N];
struct tree{int s,l,r;}t[N*20];

void ins(int &d,int l,int r,int x,int y)
{
    int p=d;d=++sz;t[d]=t[p];(t[d].s+=y)%=MOD;
    if (l==r) return;
    int mid=(l+r)/2;
    if (x<=mid) ins(t[d].l,l,mid,x,y);
    else ins(t[d].r,mid+1,r,x,y);
}

int query(int d,int p,int l,int r,int x,int y)
{
    if (l==x&&r==y) return (t[d].s+MOD-t[p].s)%MOD;
    int mid=(l+r)/2;
    if (y<=mid) return query(t[d].l,t[p].l,l,mid,x,y);
    else if (x>mid) return query(t[d].r,t[p].r,mid+1,r,x,y);
    else return (query(t[d].l,t[p].l,l,mid,x,mid)+query(t[d].r,t[p].r,mid+1,r,mid+1,y))%MOD;
}

int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++) scanf("%d",&a[i]),w[i]=a[i];
    sort(w+1,w+n+1);tot=unique(w+1,w+n+1)-w-1;
    for (int i=1;i<=n;i++) a[i]=lower_bound(w+1,w+tot+1,a[i])-w;
    int ans=0;
    for (int i=1;i<=n;i++)
    {
        f[i]=query(rt[i-1],rt[ls[a[i]]],0,tot,0,a[i]-1);
        if (!ls[a[i]]) f[i]++,(ans+=MOD-1)%=MOD;
        (ans+=f[i])%=MOD;
        rt[i]=rt[i-1];ins(rt[i],0,tot,a[i],f[i]);
        ls[a[i]]=i;
    }
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值