题意
一家餐厅有 n 道菜,编号 1…n ,大家对第 i 道菜的评价值为 ai(1≤i≤n)。有 m 位顾客,第 i 位顾客的期望值为 bi,而他的偏好值为 xi 。因此,第 i 位顾客认为第 j 道菜的美味度为 bi XOR (aj+xi),XOR 表示异或运算。第 i 位顾客希望从这些菜中挑出他认为最美味的菜,即美味值最大的菜,但由于价格等因素,他只能从第 li 道到第 ri 道中选择。请你帮助他们找出最美味的菜。
1≤n≤2×105,0≤ai,bi,xi<105,1≤li≤ri≤n(1≤i≤m);1≤m≤105
1
≤
n
≤
2
×
10
5
,
0
≤
a
i
,
b
i
,
x
i
<
10
5
,
1
≤
l
i
≤
r
i
≤
n
(
1
≤
i
≤
m
)
;
1
≤
m
≤
10
5
分析
还是考虑从高位到低位贪心。但如果要加上一个数的话就无法用字典树了。
那就考虑贪心维护aj+xi的值。
贪心到某一位时,要查询这一位能否填1,可以转换成查询序列区间中是否存在某个区间中的数。
只要用可持久化线段树搞一搞就好了。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=200005;
int n,m,a[N],rt[N],sz,bin[20];
struct tree{int l,r,s;}t[N*20];
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void ins(int &d,int l,int r,int x)
{
int p=d;d=++sz;t[d]=t[p];t[d].s++;
if (l==r) return;
int mid=(l+r)/2;
if (x<=mid) ins(t[d].l,l,mid,x);
else ins(t[d].r,mid+1,r,x);
}
int check(int d,int p,int l,int r,int x,int y)
{
if (x>y) return 0;
if (l==x&&r==y) return t[d].s-t[p].s;
int mid=(l+r)/2;
if (y<=mid) return check(t[d].l,t[p].l,l,mid,x,y);
else if (x>mid) return check(t[d].r,t[p].r,mid+1,r,x,y);
else return check(t[d].l,t[p].l,l,mid,x,mid)+check(t[d].r,t[p].r,mid+1,r,mid+1,y);
}
int main()
{
bin[0]=1;
for (int i=1;i<=18;i++) bin[i]=bin[i-1]*2;
n=read();m=read();int mx=0;
for (int i=1;i<=n;i++) a[i]=read(),mx=max(mx,a[i]);
for (int i=1;i<=n;i++) rt[i]=rt[i-1],ins(rt[i],0,mx,a[i]);
while (m--)
{
int b=read(),x=read(),l=read(),r=read(),ans=0;
for (int i=17;i>=0;i--)
if (b&bin[i])
{
int L=max(0,ans-x),R=ans-x+bin[i]-1;
if (!check(rt[r],rt[l-1],0,mx,L,min(R,mx))) ans+=bin[i];
}
else
{
int L=max(0,ans-x+bin[i]),R=ans-x+bin[i+1]-1;
if (check(rt[r],rt[l-1],0,mx,L,min(R,mx))) ans+=bin[i];
}
printf("%d\n",ans^b);
}
return 0;
}