bzoj 4571: [Scoi2016]美味 贪心+可持久化线段树

题意

一家餐厅有 n 道菜,编号 1…n ,大家对第 i 道菜的评价值为 ai(1≤i≤n)。有 m 位顾客,第 i 位顾客的期望值为 bi,而他的偏好值为 xi 。因此,第 i 位顾客认为第 j 道菜的美味度为 bi XOR (aj+xi),XOR 表示异或运算。第 i 位顾客希望从这些菜中挑出他认为最美味的菜,即美味值最大的菜,但由于价格等因素,他只能从第 li 道到第 ri 道中选择。请你帮助他们找出最美味的菜。
1n2×1050ai,bi,xi1051lirin(1im)1m105 1 ≤ n ≤ 2 × 10 5 , 0 ≤ a i , b i , x i < 10 5 , 1 ≤ l i ≤ r i ≤ n ( 1 ≤ i ≤ m ) ; 1 ≤ m ≤ 10 5

分析

还是考虑从高位到低位贪心。但如果要加上一个数的话就无法用字典树了。
那就考虑贪心维护aj+xi的值。
贪心到某一位时,要查询这一位能否填1,可以转换成查询序列区间中是否存在某个区间中的数。
只要用可持久化线段树搞一搞就好了。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=200005;

int n,m,a[N],rt[N],sz,bin[20];
struct tree{int l,r,s;}t[N*20];

int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

void ins(int &d,int l,int r,int x)
{
    int p=d;d=++sz;t[d]=t[p];t[d].s++;
    if (l==r) return;
    int mid=(l+r)/2;
    if (x<=mid) ins(t[d].l,l,mid,x);
    else ins(t[d].r,mid+1,r,x);
}

int check(int d,int p,int l,int r,int x,int y)
{
    if (x>y) return 0;
    if (l==x&&r==y) return t[d].s-t[p].s;
    int mid=(l+r)/2;
    if (y<=mid) return check(t[d].l,t[p].l,l,mid,x,y);
    else if (x>mid) return check(t[d].r,t[p].r,mid+1,r,x,y);
    else return check(t[d].l,t[p].l,l,mid,x,mid)+check(t[d].r,t[p].r,mid+1,r,mid+1,y);
}

int main()
{
    bin[0]=1;
    for (int i=1;i<=18;i++) bin[i]=bin[i-1]*2;
    n=read();m=read();int mx=0;
    for (int i=1;i<=n;i++) a[i]=read(),mx=max(mx,a[i]);
    for (int i=1;i<=n;i++) rt[i]=rt[i-1],ins(rt[i],0,mx,a[i]);
    while (m--)
    {
        int b=read(),x=read(),l=read(),r=read(),ans=0;
        for (int i=17;i>=0;i--)
            if (b&bin[i])
            {
                int L=max(0,ans-x),R=ans-x+bin[i]-1;
                if (!check(rt[r],rt[l-1],0,mx,L,min(R,mx))) ans+=bin[i];
            }
            else
            {
                int L=max(0,ans-x+bin[i]),R=ans-x+bin[i+1]-1;
                if (check(rt[r],rt[l-1],0,mx,L,min(R,mx))) ans+=bin[i];
            }
        printf("%d\n",ans^b);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值