题意
对于正整数 n,定义欧拉函数 φ(n) 为小于等于 n 且与 n 互质的正整数个数。例如
φ(1) = 1, φ(8) = 4。
给定正整数序列 a1, a2, · · · , an,请依次执行 q 个操作,操作有以下三种类型:
0 i x:修改 ai 的值为 x;
1 l r:查询 φ(al + al+1 + · · · + ar) 的值,输出这个值对 10^9 + 7 取模的结果;
2 l r:查询 φ(al × al+1 × · · · × ar) 的值,输出这个值对 10^9 + 7 取模的结果。
n ≤ 50000, q ≤ 100000,Ai及x<=40000操作 0 的个数不超过 20000,所有的 ai、操作 0 中的 i, x 及操作 1,2 中的 l, r 均在给定的限制下内均匀随机生成
分析
第一问的话,直接用树状数组维护前缀和,然后每次枚举不超过
sum−−−−√
s
u
m
的素数算欧拉函数就好了。
对于第二问,我们需要求出区间中每一种素数的贡献,那么只要线段树每个节点用一个bieset维护区间内的素数种类。每次询问的时候现在线段树上查询区间有哪些素数,然后再把没个素数的贡献乘起来即可。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<vector>
#define pb(x) push_back(x)
using namespace std;
typedef long long LL;
const int N=50005;
const int M=40005;
const int MOD=1000000007;
int n,q,a[N],tot,prime[M],low[M],num[M],p[M],ny[M],po[N*4],mul,c[N];
bool not_prime[M];
vector<int> vec;
bitset<4215> bit[N*4],ans;
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int get_phi(int n)
{
int ans=n;
for (int i=1;i<=tot&&prime[i]*prime[i]<=n;i++)
if (n%prime[i]==0)
{
ans=ans/prime[i]*(prime[i]-1);
while (n%prime[i]==0) n/=prime[i];
}
if (n>1) ans=ans/n*(n-1);
return ans%MOD;
}
void get_prime(int n)
{
for (int i=2;i<=n;i++)
{
if (!not_prime[i]) prime[++tot]=i,num[i]=tot,low[i]=i;
for (int j=1;j<=tot&&i*prime[j]<=n;j++)
{
not_prime[i*prime[j]]=1;
low[i*prime[j]]=prime[j];
if (i%prime[j]==0) break;
}
}
}
void divi(int x)
{
while (x>1)
{
int p=low[x];vec.pb(p);
while (x%p==0) x/=p;
}
}
void ins(int x,int y)
{
while (x<=n) c[x]+=y,x+=x&(-x);
}
int find(int x)
{
int ans=0;
while (x) ans+=c[x],x-=x&(-x);
return ans;
}
void build(int d,int l,int r)
{
if (l==r)
{
vec.clear();divi(a[l]);po[d]=a[l];
for (int i=0;i<vec.size();i++) bit[d][num[vec[i]]]=1;
return;
}
int mid=(l+r)/2;
build(d*2,l,mid);build(d*2+1,mid+1,r);
bit[d]=bit[d*2]|bit[d*2+1];
po[d]=(LL)po[d*2]*po[d*2+1]%MOD;
}
void modify(int d,int l,int r,int x,int y)
{
if (l==r)
{
bit[d].reset();vec.clear();divi(y);po[d]=y;
for (int i=0;i<vec.size();i++) bit[d][num[vec[i]]]=1;
return;
}
int mid=(l+r)/2;
if (x<=mid) modify(d*2,l,mid,x,y);
else modify(d*2+1,mid+1,r,x,y);
bit[d]=bit[d*2]|bit[d*2+1];
po[d]=(LL)po[d*2]*po[d*2+1]%MOD;
}
void query(int d,int l,int r,int x,int y)
{
if (l==x&&r==y) {ans|=bit[d];mul=(LL)mul*po[d]%MOD;return;}
int mid=(l+r)/2;
if (x<=mid) query(d*2,l,mid,x,min(y,mid));
if (y>mid) query(d*2+1,mid+1,r,max(x,mid+1),y);
}
int main()
{
get_prime(40000);
ny[0]=ny[1]=1;
for (int i=2;i<=40000;i++) ny[i]=(LL)(MOD-MOD/i)*ny[MOD%i]%MOD;
for (int i=1;i<=tot;i++) p[i]=(LL)(prime[i]-1)*ny[prime[i]]%MOD;
n=read();q=read();
for (int i=1;i<=n;i++) a[i]=read(),ins(i,a[i]);
build(1,1,n);
while (q--)
{
int op=read(),x=read(),y=read();
if (!op) modify(1,1,n,x,y),ins(x,-a[x]),a[x]=y,ins(x,y);
else if (op==1) printf("%d\n",get_phi(find(y)-find(x-1)));
else
{
ans.reset();mul=1;query(1,1,n,x,y);
for (int i=ans._Find_first();i<ans.size();i=ans._Find_next(i)) mul=(LL)mul*p[i]%MOD;
printf("%d\n",mul);
}
}
return 0;
}