bzoj 5245: [Fjwc2018]欧拉函数 线段树套bitset

该博客介绍了如何利用线段树和bitset数据结构解决欧拉函数在动态序列上的查询问题。内容包括理解欧拉函数、处理修改与查询操作,并提供了针对区间乘积和和的解决方案,特别关注了处理素数贡献的部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

对于正整数 n,定义欧拉函数 φ(n) 为小于等于 n 且与 n 互质的正整数个数。例如
φ(1) = 1, φ(8) = 4。
给定正整数序列 a1, a2, · · · , an,请依次执行 q 个操作,操作有以下三种类型:
0 i x:修改 ai 的值为 x;
1 l r:查询 φ(al + al+1 + · · · + ar) 的值,输出这个值对 10^9 + 7 取模的结果;
2 l r:查询 φ(al × al+1 × · · · × ar) 的值,输出这个值对 10^9 + 7 取模的结果。
n ≤ 50000, q ≤ 100000,Ai及x<=40000操作 0 的个数不超过 20000,所有的 ai、操作 0 中的 i, x 及操作 1,2 中的 l, r 均在给定的限制下内均匀随机生成

分析

第一问的话,直接用树状数组维护前缀和,然后每次枚举不超过 sum s u m 的素数算欧拉函数就好了。
对于第二问,我们需要求出区间中每一种素数的贡献,那么只要线段树每个节点用一个bieset维护区间内的素数种类。每次询问的时候现在线段树上查询区间有哪些素数,然后再把没个素数的贡献乘起来即可。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<vector>
#define pb(x) push_back(x)
using namespace std;

typedef long long LL;

const int N=50005;
const int M=40005;
const int MOD=1000000007;

int n,q,a[N],tot,prime[M],low[M],num[M],p[M],ny[M],po[N*4],mul,c[N];
bool not_prime[M];
vector<int> vec;
bitset<4215> bit[N*4],ans;

int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

int get_phi(int n)
{
    int ans=n;
    for (int i=1;i<=tot&&prime[i]*prime[i]<=n;i++)
        if (n%prime[i]==0)
        {
            ans=ans/prime[i]*(prime[i]-1);
            while (n%prime[i]==0) n/=prime[i];
        }
    if (n>1) ans=ans/n*(n-1);
    return ans%MOD;
}

void get_prime(int n)
{
    for (int i=2;i<=n;i++)
    {
        if (!not_prime[i]) prime[++tot]=i,num[i]=tot,low[i]=i;
        for (int j=1;j<=tot&&i*prime[j]<=n;j++)
        {
            not_prime[i*prime[j]]=1;
            low[i*prime[j]]=prime[j];
            if (i%prime[j]==0) break;
        }
    }
}

void divi(int x)
{
    while (x>1)
    {
        int p=low[x];vec.pb(p);
        while (x%p==0) x/=p;
    }
}

void ins(int x,int y)
{
    while (x<=n) c[x]+=y,x+=x&(-x);
}

int find(int x)
{
    int ans=0;
    while (x) ans+=c[x],x-=x&(-x);
    return ans;
}

void build(int d,int l,int r)
{
    if (l==r)
    {
        vec.clear();divi(a[l]);po[d]=a[l];
        for (int i=0;i<vec.size();i++) bit[d][num[vec[i]]]=1;
        return;
    }
    int mid=(l+r)/2;
    build(d*2,l,mid);build(d*2+1,mid+1,r);
    bit[d]=bit[d*2]|bit[d*2+1];
    po[d]=(LL)po[d*2]*po[d*2+1]%MOD;
}

void modify(int d,int l,int r,int x,int y)
{
    if (l==r)
    {
        bit[d].reset();vec.clear();divi(y);po[d]=y;
        for (int i=0;i<vec.size();i++) bit[d][num[vec[i]]]=1;
        return;
    }
    int mid=(l+r)/2;
    if (x<=mid) modify(d*2,l,mid,x,y);
    else modify(d*2+1,mid+1,r,x,y);
    bit[d]=bit[d*2]|bit[d*2+1];
    po[d]=(LL)po[d*2]*po[d*2+1]%MOD;
}

void query(int d,int l,int r,int x,int y)
{
    if (l==x&&r==y) {ans|=bit[d];mul=(LL)mul*po[d]%MOD;return;}
    int mid=(l+r)/2;
    if (x<=mid) query(d*2,l,mid,x,min(y,mid));
    if (y>mid) query(d*2+1,mid+1,r,max(x,mid+1),y);
}

int main()
{
    get_prime(40000);
    ny[0]=ny[1]=1;
    for (int i=2;i<=40000;i++) ny[i]=(LL)(MOD-MOD/i)*ny[MOD%i]%MOD;
    for (int i=1;i<=tot;i++) p[i]=(LL)(prime[i]-1)*ny[prime[i]]%MOD;
    n=read();q=read();
    for (int i=1;i<=n;i++) a[i]=read(),ins(i,a[i]);
    build(1,1,n);
    while (q--)
    {
        int op=read(),x=read(),y=read();
        if (!op) modify(1,1,n,x,y),ins(x,-a[x]),a[x]=y,ins(x,y);
        else if (op==1) printf("%d\n",get_phi(find(y)-find(x-1)));
        else
        {
            ans.reset();mul=1;query(1,1,n,x,y);
            for (int i=ans._Find_first();i<ans.size();i=ans._Find_next(i)) mul=(LL)mul*p[i]%MOD;
            printf("%d\n",mul);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值