LibreOJ #2541.「PKUWC 2018」猎人杀 分治NTT+容斥原理

题意

猎人杀是一款风靡一时的游戏“狼人杀”的民间版本,他的规则是这样的:
一开始有 n n 个猎人,第i个猎人有仇恨度 wi w i ,每个猎人只有一个固定的技能:死亡后必须开一枪,且被射中的人也会死亡。
然而向谁开枪也是有讲究的,假设当前还活着的猎人有 [i1...im] [ i 1 . . . i m ] ,那么有 wikmj=1wij w i k ∑ j = 1 m w i j 概率是向猎人 ik i k 开枪。
一开始第一枪由你打响,目标的选择方法和猎人一样,由于开枪导致的连锁反应,所有猎人最终都会死亡,现在 1 1 号猎人想知道它是最后一个死的的概率。
答案对998244353取模。
wi>0,wi105 w i > 0 , ∑ w i ≤ 10 5

分析

比较有意思的一道题。
考虑容斥,枚举哪些人一定在第一个人后面选,那么容斥系数就是 (1) ( − 1 ) 人 数
关键在于怎么求其他人被选的概率。
A A 表示n个人 wi w i 的和, S S 表示选出的人的wi的和,那么系数后面的概率就是

i=0(1S+w1A)iw1A=w1S+w1 ∑ i = 0 ∞ ( 1 − S + w 1 A ) i w 1 A = w 1 S + w 1

为什么这样是对的呢?
考虑这样一个问题,假设现在有 n n 个白球,每次会随机选任意一个,选出一个球后就把它扔掉,问第i次选到某一个白球的概率是多少。
这个问题显然等价于,每次选出一个白球后,我不扔掉它,而是给它打上一个标记。若某次选出了一个被打了标记的球,则将其放回去,问第i个被标记的球是某一个的概率是多少。
那么现在我就可以把原来的问题看成把一个人打标记而不是杀死一个人,这样抽中每个人的概率就是不变的。然后一个到正无穷的循环,刚好可以算出每一种情况的概率的和,所以就是正确的。
剩下的问题就变成了如何求S,只要用分治NTT搞一搞就好了。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>

typedef long long LL;

const int N=100005;
const int MOD=998244353;

int n,w[N],a[20][N*4],rev[N*4],L,s[N];

int ksm(int x,int y)
{
    int ans=1;
    while (y)
    {
        if (y&1) ans=(LL)ans*x%MOD;
        x=(LL)x*x%MOD;y>>=1;
    }
    return ans;
}

void NTT(int *a,int f)
{
    for (int i=0;i<L;i++) if (i<rev[i]) std::swap(a[i],a[rev[i]]);
    for (int i=1;i<L;i<<=1)
    {
        int wn=ksm(3,f==1?(MOD-1)/i/2:MOD-1-(MOD-1)/i/2);
        for (int j=0;j<L;j+=(i<<1))
        {
            int w=1;
            for (int k=0;k<i;k++)
            {
                int u=a[j+k],v=(LL)a[j+k+i]*w%MOD;
                a[j+k]=(u+v)%MOD;a[j+k+i]=(u+MOD-v)%MOD;
                w=(LL)w*wn%MOD;
            }
        }
    }
    int ny=ksm(L,MOD-2);
    if (f==-1) for (int i=0;i<L;i++) a[i]=(LL)a[i]*ny%MOD;
}

void solve(int l,int r,int d)
{
    if (l==r)
    {
        for (int i=1;i<w[l];i++) a[d][i]=0;
        a[d][0]=1;a[d][w[l]]=MOD-1;
        return;
    }
    int mid=(l+r)/2;
    solve(l,mid,d+1);
    for (int i=0;i<=s[mid]-s[l-1];i++) a[d][i]=a[d+1][i];
    solve(mid+1,r,d+1);
    int lg=0;
    for (L=1;L<=s[r]-s[l-1];L<<=1,lg++);
    for (int i=0;i<L;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1));
    for (int i=s[mid]-s[l-1]+1;i<L;i++) a[d][i]=0;
    for (int i=s[r]-s[mid]+1;i<L;i++) a[d+1][i]=0;
    NTT(a[d],1);NTT(a[d+1],1);
    for (int i=0;i<L;i++) a[d][i]=(LL)a[d][i]*a[d+1][i]%MOD;
    NTT(a[d],-1);
}

int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++) scanf("%d",&w[i]),s[i]=s[i-1]+w[i];
    solve(2,n,0);
    int ans=0;
    for (int i=0;i<=s[n]-s[1];i++) (ans+=(LL)w[1]*ksm(i+w[1],MOD-2)%MOD*a[0][i]%MOD)%=MOD;
    printf("%d",ans);
    return 0;
}
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值