Codeforces 997D Cycles in product 点分治+dp

题意

有两棵树 T 1 T_1 T1 T 2 T_2 T2,大小分别为 n 1 , n 2 n_1,n_2 n1,n2。构造一个新图,其中的每个节点有二元组 ( u , v ) ( 1 ≤ u ≤ n 1 , 1 ≤ v ≤ n 2 ) (u,v)(1\le u\le n_1,1\le v\le n_2) (u,v)(1un1,1vn2) 表示。 ( u , v 1 ) , ( u , v 2 ) (u,v_1),(u,v_2) (u,v1),(u,v2) 相邻当且仅当在 T 2 T_2 T2 v 1 , v 2 v_1,v_2 v1,v2 相邻。 ( u 1 , v ) , ( u 2 , v ) (u_1,v),(u_2,v) (u1,v),(u2,v) 相邻当且仅当在 T 1 T_1 T1 u 1 , u 2 u_1,u_2 u1,u2 相邻。问新图中有多少个不同的长度为 k k k 的环。
n 1 , n 2 ≤ 4000 , k ≤ 75 n_1,n_2\le 4000,k\le 75 n1,n24000,k75

分析

实际上就是在每棵树上分别走。如果我们能对每棵树求出 s t e p i step_i stepi表示长度为 i i i的环的数量的话,就可以很容易求出答案,问题在于 s t e p i step_i stepi怎么求。
考虑点分治,然后求所有经过分治中心 c c c的环。
f i , x f_{i,x} fi,x表示从 c c c开始走了 i i i步走到 x x x,且除了一开始以外不经过 c c c的方案数, g i , x g_{i,x} gi,x表示从 c c c开始走了 i i i步走到 x x x的方案数。
转移比较显然,那么对于某个点 x x x,从 x x x开始走,经过 c c c的大小为 i i i的环的数量就是 ∑ j = 0 i f j , x ∗ g i − j , x \sum_{j=0}^if_{j,x}*g_{i-j,x} j=0ifj,xgij,x
这里可以看成是枚举第一次到达 c c c是在第几步,然后后面随便走。需要特判 x x x就是分治中心的情况。
这样的话总的时间复杂度就是 O ( n k 2 log ⁡ n ) O(nk^2\log n) O(nk2logn),如果用FFT来优化卷积的话可以做到 O ( n k log ⁡ n log ⁡ k ) O(nk\log n\log k) O(nklognlogk)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>

typedef long long LL;

const int N=4005;
const int M=80;
const int MOD=998244353;

int m,jc[M],ny[M];

struct Tree
{
	int n,cnt,last[N],f[M][N],g[M][N],size[N],ans[M],w[N],tot,a[N],sum,root;
	bool vis[N];
	struct edge{int to,next;}e[N*2];
	
	void addedge(int u,int v)
	{
		e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
		e[++cnt].to=u;e[cnt].next=last[v];last[v]=cnt;
	}
	
	void get_root(int x,int fa)
	{
		size[x]=1;w[x]=0;
		for (int i=last[x];i;i=e[i].next)
		{
			if (e[i].to==fa||vis[e[i].to]) continue;
			get_root(e[i].to,x);
			size[x]+=size[e[i].to];
			w[x]=std::max(w[x],size[e[i].to]);
		}
		w[x]=std::max(w[x],sum-size[x]);
		if (!root||w[x]<w[root]) root=x;
	}
	
	void get(int x,int fa)
	{
		a[++tot]=x;size[x]=1;
		for (int i=last[x];i;i=e[i].next)
			if (e[i].to!=fa&&!vis[e[i].to]) get(e[i].to,x),size[x]+=size[e[i].to];
	}
	
	void calc(int x)
	{
		tot=0;get(x,0);
		for (int i=1;i<=tot;i++) f[0][a[i]]=0;
		f[0][x]=g[0][x]=1;
		for (int i=1;i<=m;i++)
			for (int j=1;j<=tot;j++)
			{
				int y=a[j];
				f[i][y]=g[i][y]=0;
				for (int k=last[y];k;k=e[k].next)
				{
					if (vis[e[k].to]) continue;
					(g[i][y]+=g[i-1][e[k].to])%=MOD;
					if (y!=x) (f[i][y]+=f[i-1][e[k].to])%=MOD;
				}
			}
		for (int i=1;i<=tot;i++)
		{
			int y=a[i];
			if (y==x)
			{
				for (int j=0;j<=m;j++) (ans[j]+=g[j][x])%=MOD;
				continue;
			}
			for (int j=0;j<=m;j++)
				for (int k=0;j+k<=m;k++)
					(ans[j+k]+=(LL)f[j][y]*g[k][y]%MOD)%=MOD;
		}
		vis[x]=1;
		for (int i=last[x];i;i=e[i].next)
		{
			if (vis[e[i].to]) continue;
			root=0;sum=size[e[i].to];
			get_root(e[i].to,x);
			calc(root);
		}
	}
	
	void solve()
	{
		sum=n;root=0;
		get_root(1,0);
		calc(root);
	}
}t1,t2;

int C(int n,int m)
{
	return (LL)jc[n]*ny[m]%MOD*ny[n-m]%MOD;
}

int main()
{
	scanf("%d%d%d",&t1.n,&t2.n,&m);
	jc[0]=jc[1]=ny[0]=ny[1]=1;
	for (int i=2;i<=m;i++) jc[i]=(LL)jc[i-1]*i%MOD,ny[i]=(LL)(MOD-MOD/i)*ny[MOD%i]%MOD;
	for (int i=2;i<=m;i++) ny[i]=(LL)ny[i-1]*ny[i]%MOD;
	for (int i=1;i<t1.n;i++)
	{
		int x,y;scanf("%d%d",&x,&y);
		t1.addedge(x,y);
	}
	for (int i=1;i<t2.n;i++)
	{
		int x,y;scanf("%d%d",&x,&y);
		t2.addedge(x,y);
	}
	t1.solve();t2.solve();
	int s=0;
	for (int i=0;i<=m;i++)
		(s+=(LL)t1.ans[i]*t2.ans[m-i]%MOD*C(m,i)%MOD)%=MOD;
	printf("%d",s);
	return 0;
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值