思路:正常最小生成树有n-1条边,因为s个点可以用卫星电话连接,可以少连接s-1条边,所以需连接(n-1)-(s-1)=n-s条边
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#define MAX 505
using namespace std;
int s,n,m,total=1;
double ans;
int v[MAX*MAX],u[MAX*MAX];//存储边
int f[MAX],r[MAX*MAX];
int ax[MAX],ay[MAX];//存储坐标
double val[MAX*MAX];//存储权值
double deal(int a,int b){
return sqrt((ax[a]-ax[b])*(ax[a]-ax[b])+(ay[a]-ay[b])*(ay[a]-ay[b]));//计算两点间距离
}
void m_int()
{
cin>>s>>n;
for(int i=1;i<=n;i++)
scanf("%d%d",&ax[i],&ay[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(i==j) continue;
else
{
m++;
u[m]=i;v[m]=j;val[m]=deal(i,j);//按照边存储
}
}
}
int cmp(const int a,const int b){
return val[a]<val[b];
}
int find(int x){
return f[x]==x?x:f[x]=find(f[x]);
}
void kruskal()
{
for(int i=1;i<=n;i++) f[i]=i;
for(int i=1;i<=m;i++) r[i]=i;
sort(r+1,r+1+m,cmp);
for(int i=1;total<=n-s;i++)//图中已有s个点连接,还需要连接n-s条
{
int e=r[i],x,y;
x=find(u[e]),y=find(v[e]);
if(x!=y)
{
total++;//记录边数
ans=val[e];//最后一条边的权值为最大值
f[x]=y;
}
}
}
int main()
{
m_int();
kruskal();
printf("%.2lf",ans);
return 0;
}