思路:显然,能拦截的数目是最长不下降子序列的长度。第二问直接的方法是最小路径覆盖,但是二分图匹配的复杂度较高,我们可以将其转化成求最长上升子序列,其最大值即等于不上升子序列的最小划分数。这就涉及到组合数学中偏序集的Dilworth定理。因为数学差,这里不再证明
#include <cstdio>
#include <iostream>
#define MAX 105
using namespace std;
int up[MAX],down[MAX],a[MAX];
int n,i,max_up,max_down;
int main()
{
i=1,n=0;
while(scanf("%d",&a[i])!=EOF)
{
up[i]=1;
down[i]=1;
i++;
n++;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<i;j++)
if(a[j]>=a[i])
up[i]=max(up[i],up[j]+1);//最长不下降子序列
else
down[i]=max(down[i],down[j]+1);//最长上升子序列
max_up=max(max_up,up[i]);
max_down=max(max_down,down[i]);
}
cout<<max_up<<endl;
cout<<max_down<<endl;
return 0;
}