Centos/Linux下调整分区大小(以home和根分区为例)

本文介绍如何在Linux系统中调整home和根分区的存储空间大小,包括卸载分区、压缩分区大小及重新分配空闲空间的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在安装新系统的时候,有时候没法预估或者说错误的划分了分区大小,常常会导致我们后面的操作出现极大地不方便,比如某个分区分的太小了,导致
软件安装的时候会报安装空间不够,这就很麻烦。在这里我就记录一下错误分区后对home和根分区存储空间大小调整的整个过程!
1.查看我们机器现有的分区状况

注意红色框中的信息,这是我们后面要更改的分区路径。
通过上面我们可以发现根分区和home分区产生极大的不合理性,home分区太大了,所以这里我们将对home分区缩小存储空间并把压缩的存储空间添加到root下面。
2.卸载我们的home分区,并压缩我们的home分区大小


3.这个时候我们重新装载我们的home目录,通过运行结果可以看到我们将home分区压缩到20G

这样对home的压缩并重新装载就完成了,如下图:


4.我们上面的三步将home的块处理好了,但是我们空闲的硬盘并没有添加到root下,所以下面的步骤就是将压缩出来的磁盘空间添加到root下:

这个重新加载和挂载的过程中需要花费一点时间,不过我们也可以在这段时间中不断的查看盘符的大小,这个时候我们会发现root盘符的大小会一点点的增加上来,如下图:

从上图最后的结果我们可以看出我们将home中的空闲盘符压缩出来812G添加到了root下面,这样我们的root空间就瞬间增加了。这样我们的目的就达到了。
欢迎大家留言讨论,谢谢!




### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导支持信息。此外,在实际应用场景之前应该充测试经过量化的模型以确保满足预期的质量标准。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值