MUDA:利用特征和分类器同时适配进行多源迁移学习 AAAI-19最新论文

这篇论文提出了一个两阶段对齐框架,解决多源无监督域自适应(MUDA)问题。通过在多个特定领域空间中对源和目标域的分布进行对齐,并优化领域特定的分类器,来改善跨域分类效果。方法包括共同特征提取、特定领域特征提取和分类器对齐,使用MMD进行分布对齐,通过最小化分类器之间的不一致性进行分类器对齐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本论文是我在读迁移学习方面阅读和理解最为轻松的一篇,论文条理清晰容易理解。方法简单有效,思路明了,实验也做的非常全面,而且对我等初学者很是友好,可以学习学习人家的方法和思路进行一些实验和思考,好了直接上货:

论文:Aligning Domain-Specific Distribution and Classifier for Cross-Domain Classification from Multiple Sources
代码:https://github.com/easezyc/deep-transfer-learning

Motivation

近年来,基于深度学习的多源无监督域自适应(MUDA)算法主要通过将所有对源域和目标域在一个公共特征空间中的分布进行对齐,来提取所有域的公共域不变表示。然而,通常很难为所有域MUDA提取相同的域不变表示。此外,这些方法在不考虑类之间特定于领域的决策边界的情况下匹配分布。本文正是为要解决这些问题,提出一个新的两阶段对齐框架,1)不仅将每一对源和目标域的分布在多个特定的领域空间对齐(使用mmd),2)还将分类器的输出,利用每两个特定于域的边界差最小化之和求得。
图1

Method

<

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值