本论文是我在读迁移学习方面阅读和理解最为轻松的一篇,论文条理清晰容易理解。方法简单有效,思路明了,实验也做的非常全面,而且对我等初学者很是友好,可以学习学习人家的方法和思路进行一些实验和思考,好了直接上货:
论文:Aligning Domain-Specific Distribution and Classifier for Cross-Domain Classification from Multiple Sources
代码:https://github.com/easezyc/deep-transfer-learning
Motivation
近年来,基于深度学习的多源无监督域自适应(MUDA)算法主要通过将所有对源域和目标域在一个公共特征空间中的分布进行对齐,来提取所有域的公共域不变表示。然而,通常很难为所有域MUDA提取相同的域不变表示。此外,这些方法在不考虑类之间特定于领域的决策边界的情况下匹配分布。本文正是为要解决这些问题,提出一个新的两阶段对齐框架,1)不仅将每一对源和目标域的分布在多个特定的领域空间对齐(使用mmd),2)还将分类器的输出,利用每两个特定于域的边界差最小化之和求得。
Method
<