有向无环图
在图论中,如果一个有向图无法从某个顶点出发经过若干条边回到该点,则这个图是一个有向无环图(DAG图)。
因为有向图中一个点经过两种路线到达另一个点未必形成环,因此有向无环图未必能转化成树,但任何有向树均为有向无环图。
邻接矩阵
邻接矩阵(Adjacency Matrix)是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中 V= [ v 1 , v 2 , … , v n ] [v_1,v_2,…,v_n] [v1,v2,…,vn] 。G的邻接矩阵是一个具有下列性质的 n n n 阶方阵:
- 对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为 0 0 0,有向图则不一定如此。
- 在无向图中,任一顶点 i i i 的度为第 i i i 列(或第 i i i 行)所有非零元素的个数,在有向图中顶点 i i i 的出度为第 i i i 行所有非零元素的个数,而入度为第 i i