拓扑排序

本文介绍了有向无环图(DAG)的概念,并详细讲解了邻接矩阵和邻接表这两种图的存储结构。接着,重点阐述了拓扑排序的定义和其在有向无环图中的应用,帮助理解如何对DAG进行线性排序。
摘要由CSDN通过智能技术生成

有向无环图

在图论中,如果一个有向图无法从某个顶点出发经过若干条边回到该点,则这个图是一个有向无环图(DAG图)。
因为有向图中一个点经过两种路线到达另一个点未必形成环,因此有向无环图未必能转化成树,但任何有向树均为有向无环图。

邻接矩阵

邻接矩阵(Adjacency Matrix)是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中 V= [ v 1 , v 2 , … , v n ] [v_1,v_2,…,v_n] [v1,v2,,vn] 。G的邻接矩阵是一个具有下列性质的 n n n 阶方阵:

  1. 对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为 0 0 0,有向图则不一定如此。
  2. 在无向图中,任一顶点 i i i 的度为第 i i i 列(或第 i i i 行)所有非零元素的个数,在有向图中顶点 i i i 的出度为第 i i i 行所有非零元素的个数,而入度为第 i i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值