Task 4 基于深度学习的文本分类1

Task 4 基于深度学习的文本分类1

与传统机器学习不同,深度学习即提供特征提取功能,也可以完成分类的功能。

4.1 学习目标

1.学习FastText的使用和基础原理
2.学会使用验证集进行调参

4.2 现有文本表示方法的缺陷

上一章节介绍了几种文本表示方法:
1.One-hot
2.Bag of Words
3.N-gram
4.TF-IDF
上述方法或多或少都存在一定的问题:转换得到的向量维度很高,需要较长的训练时间;没有考虑单词与单词之间的关系,只是进行了统计。
与上述方法不同,深度学习也可以用于文本表示,还可以将其映射到一个低维空间,比如:FastText,Word2Vec和Bert。本章先介绍FastText。

4.2.1 FastText

fastText的核心思想就是:将整篇文档的词及n-gram向量叠加平均得到文档向量,然后使用文档向量做softmax多分类。这中间涉及到两个技巧:字符级n-gram特征的引入以及分层Softmax分类。
FastText是一个三层的神经网络,包含输入层,隐含层,输出层:
在这里插入图片描述
使用keras可以实现FastText网络结构:
在这里插入图片描述
FastText在文本分类上相较于TF-IDF的优点:
1.FastText使用单词的Embedding叠加获得的文档向量,将相似的句子分为一类。
2.FastText学习到的Embedding空间维度较低,可以快速进行训练。
关于Embedding的含义:
Embedding在数学上表示一个maping, f: X -> Y, 也就是一个function,其中该函数是injective(就是我们所说的单射函数,每个Y只有唯一的X对应,反之亦然)和structure-preserving (结构保存,比如在X所属的空间上X1 < X2,那么映射后在Y所属空间上同理 Y1 < Y2)。那么对于word embedding,就是将单词word映射到另外一个空间,其中这个映射具有injective和structure-preserving的特点。
通俗的翻译可以认为是单词嵌入,就是把X所属空间的单词映射为到Y空间的多维向量。相似词映射到相似方向。

4.2.2 基于FastText的文本分类

FastText可以快速的在CPU上进行训练,最好的实践方法就是官方开源的 版本.
安装FastText可以使用pip install fasttext直接安装,也可以在 这里.找到适合自己的版本下载后安装。
分类模型:

import pandas as pd
from sklearn.metrics import f1_score

#转换为FastText需要的格式
train_df = pd.read_csv('data/train_set.csv', sep='\t', nrows=15000)
train_df['label_ft'] = '__label__' + train_df['label'].astype(str)
train_df[['text', 'label_ft']].iloc[:-5000].to_csv('train.csv', index=None, header=None, sep='\t')

import fasttext
model = fasttext.train_supervised('train.csv', lr=1, wordNgrams=2, verbose=2, minCount=1, epoch=25, loss="hs")
val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[-5000:]['text']]
print(f1_score(train_df['label'].values[-5000:].astype(str), val_pred, average='macro'))

结果:0.8235765814370285
这里使用的数据量较小,增加训练集数量后,精度也会相应增加。在5W条训练样本时,验证集得到可以到0.89~0.90左右。

4.2.3 如何使用验证集调参

训练时,模型的参数在一定程度上会影响模型的精度,该如何去选择这些参数呢?方法如下:
1.通过阅读文档,弄清楚参数的大致含义,了解哪些参数会增加模型的复杂度。
2.通过在验证集上进行模型精度验证,判断模型是否存在过拟合或者欠拟合的问题;
在这里插入图片描述
可以使用10折交叉验证,每折使用9/10的数据进行训练,剩下1/10作为验证集检验模型的效果。需要注意每折的划分必须保证标签的分与整个数据集的分布一致。

label2id = {}
for i in range(total):
	label = str(all_labels[i])
	if label not in label2id:
		label2id[label] = [i]
	else:
		label2id[label].append(i)

通过10折划分,一共得到10份分布一致的数据,索引分别为0到9,每次通过将一份数据作为验证集,剩余数据作为训练集,获得所有数据的10种分割。一般来说,可以使用最后一份,即索引为9的一份作为验证集,索引0-8的作为训练集,然后基于验证集的结果调整超参数,使得模型性能更优。

4.3 小结

本章介绍了FastText的原理,并且创建了基础的分类模型。然后介绍了10折交叉验证划分数据集。

4.4 作业

1.阅读FastText的参数,尝试修改参数,得到更好的分数。
参数含义:
train_supervised parameters :
input # training file path (required)
lr # learning rate [0.1]
dim # size of word vectors [100]
ws # size of the context window [5]
epoch # number of epochs [5]
minCount # minimal number of word occurences [1]
minCountLabel # minimal number of label occurences [1]
minn # min length of char ngram [0]
maxn # max length of char ngram [0]
neg # number of negatives sampled [5]
wordNgrams # max length of word ngram [1]
loss # loss function {ns, hs, softmax, ova} [softmax]
bucket # number of buckets [2000000]
thread # number of threads [number of cpus]
lrUpdateRate # change the rate of updates for the learning rate [100]
t # sampling threshold [0.0001]
label # label prefix [‘label’]
verbose # verbose [2]

2.基于验证集的结果调整超参数,使得模型性能更优。
调参可以使用贝叶斯优化方法:

import pandas as pd
from sklearn.metrics import f1_score
from bayes_opt import BayesianOptimization
import fasttext# 导入fasetext


def rf_cv(lr, wordNgrams,epoch,dim):

    model = fasttext.train_supervised('train.csv', lr=lr, wordNgrams=int(wordNgrams), 
                                  verbose=2, minCount=1, epoch=int(epoch),dim=int(dim))#训练模型

    val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[-5000:]['text']]# 预测
    return f1_score(train_df['label'].values[-5000:].astype(str), val_pred, average='macro')#输出f1值

rf_bo = BayesianOptimization(
    rf_cv,
    {
    'lr':(0.001,2),
    'wordNgrams': (2, 6),
    'epoch': (8, 30),
    'dim':(60,600)
    }
)

rf_bo.maximize()

第一个参数是我们的优化目标函数,第二个参数是我们所需要输入的超参数名称,以及其范围。

|   iter    |  target   |    dim    |   epoch   |    lr     | wordNg... |
-------------------------------------------------------------------------
|  1        |  0.8389   |  103.0    |  21.61    |  0.4715   |  3.989    |
|  2        |  0.7764   |  123.4    |  19.76    |  0.2017   |  2.315    |
|  3        |  0.8693   |  356.4    |  27.2     |  1.462    |  5.929    |
|  4        |  0.8735   |  209.3    |  20.82    |  1.998    |  3.542    |
|  5        |  0.8723   |  290.8    |  26.28    |  0.457    |  2.828    |
|  6        |  0.8711   |  207.9    |  20.11    |  1.796    |  4.146    |
|  7        |  0.8745   |  239.3    |  23.68    |  1.377    |  3.204    |
|  8        |  0.853    |  323.0    |  12.71    |  0.9987   |  3.346    |
|  9        |  0.09211  |  266.6    |  8.0      |  0.001    |  6.0      |
|  10       |  0.1185   |  310.9    |  30.0     |  0.001    |  6.0      |
|  11       |  0.8675   |  226.1    |  15.05    |  1.635    |  5.776    |
|  12       |  0.8617   |  341.9    |  14.21    |  0.6688   |  2.609    |
|  13       |  0.8136   |  360.6    |  9.077    |  2.0      |  6.0      |
|  14       |  0.06795  |  225.3    |  30.0     |  0.001    |  2.0      |
|  15       |  0.8678   |  237.3    |  13.04    |  2.0      |  5.957    |
|  16       |  0.8487   |  214.9    |  8.833    |  2.0      |  4.95     |
|  17       |  0.8682   |  342.7    |  27.58    |  2.0      |  6.0      |
|  18       |  0.02293  |  371.2    |  23.2     |  0.01911  |  3.282    |
|  19       |  0.87     |  351.2    |  19.17    |  1.633    |  5.009    |
|  20       |  0.4848   |  109.0    |  8.254    |  0.2686   |  3.916    |
|  21       |  0.8097   |  332.8    |  8.0      |  2.0      |  6.0      |
|  22       |  0.8366   |  91.3     |  29.95    |  0.4541   |  4.21     |
|  23       |  0.8707   |  250.7    |  30.0     |  2.0      |  6.0      |
|  24       |  0.8696   |  84.88    |  16.14    |  2.0      |  6.0      |
|  25       |  0.02293  |  74.65    |  26.0     |  0.01381  |  3.487    |
|  26       |  0.8234   |  91.36    |  8.716    |  0.6761   |  2.719    |
|  27       |  0.874    |  279.2    |  29.72    |  0.8131   |  3.492    |
|  28       |  0.8754   |  196.6    |  8.0      |  2.0      |  2.0      |
|  29       |  0.02293  |  188.4    |  19.42    |  0.007377 |  2.679    |
|  30       |  0.8732   |  248.9    |  19.68    |  1.083    |  2.146    |
=========================================================================

最优结果: 0.8754
最优参数参数dim = 196.6,epoch = 8.0,lr = 2.0,wordNgram = 2.0

基于深度学习文本分类任务是指利用深度学习模型对文本进行情感分类。在这个任务中,我们使用了CNN和RNN模型来进行文本分类。数据集包含了15万余项英文文本,情感分为0-4共五类情感。任务的流程如下:输入数据→特征提取→神经网络设计→结果输出。 在特征提取阶段,我们使用了词嵌入(Word embedding)技术。词嵌入是一种将单词映射到低维向量空间的方法,它可以将单词的语义信息编码为向量表示。在本次任务中,我们参考了博客\[NLP-Beginner 任务二:基于深度学习文本分类\](https://pytorch.org/Convolutional Neural Networks for Sentence Classification)中的方法,使用了预训练的词嵌入模型。 神经网络设计阶段,我们采用了卷积神经网络(CNN)和循环神经网络(RNN)的结合。具体来说,我们使用了四个卷积核,大小分别为2×d, 3×d, 4×d, 5×d。这样设计的目的是为了挖掘词组的特征。例如,2×d的卷积核用于挖掘两个连续单词之间的关系。在模型中,2×d的卷积核用红色框表示,3×d的卷积核用黄色框表示。 最后,我们将模型的输出结果进行分类,得到文本的情感分类结果。这个任务的目标是通过深度学习模型对文本进行情感分类,以便更好地理解和分析文本数据。 #### 引用[.reference_title] - *1* *3* [NLP-Brginner 任务二:基于深度学习文本分类](https://blog.csdn.net/m0_61688615/article/details/128713638)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [NLP基本任务二:基于深度学习文本分类](https://blog.csdn.net/Mr_green_bean/article/details/90480918)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值