题目
最大公共子图:
证明如下问题是NP-完全的:
输入:两个图G1=(V1,E1)和G2=(V2,E2);预算b
输出:两个节点集合V1’和V2’分别是V1和V2的子集,它们被移除后,将在两图中分别留下至少b个节点,且图的剩余部分完全一样
题意分析
给定两个图G1,G2,G1去掉一些定点V1’,G2去掉一些定点V2’之后,两个图都得到结点数至少为b的子图,且这两个子图完全相同。
证明
要证一个问题是NP-complete,那就需要证明它既是NP问题又要证明它是NP-hard问题。
首先证明它是一个NP问题。因为要求两个图的公共子图,已知它们的顶点,因此可以在多项式的时间求解是否正确,因此属于NP问题。
接着证明它是一个NP-hard问题。设G1=(V,E), G2=(V, ε)
则G1,G2的点集相同,G1有边集E,G2没有边。 又由题意,有至少b个节点的公共子图,即有b个顶点的独立集。
假设b个节点不属于独立集,则这b个节点中至少有2个节点有边相连,则这2个节点在G1中也是相连的,但在G2图中没有边集,因此假设与题意矛盾
接着证明有b个顶点的独立集,就有节点数为b的最大公共子图:
在G1,G2中,取这b个顶点作为构成他们的子图。因为G1有独立集,就代表这b个顶点之间没有边相连,又有G2是一个没有边集的图,所以只要两个子图没有边而有相同的b个顶点,这两个子图就是相同的,也即存在结点数为b的公共子图。
综上所述,图的独立集可以归约到公共子图问题,所以公共子图问题是NP-hard问题,结合起来公共子图是NP-Complete问题。