摘要
本文围绕AI是否是“人工智障”展开讨论。首先阐述了AI发展现状及争议,包括应用场景广泛但存在问题,如商品推荐不合理、技术应用乱象及四大隐忧等。接着分析了AI被赞为智能的表现,如快速响应与高准确率、行业应用优势等。同时指出了AI被称为“人工智障”的原因,包括知识表示不当、语音识别问题、自然语言处理局限、计算机视觉挑战、自主决策风险、AI客服不足、缺乏通用智能和模拟逻辑局限等。然后探讨了AI与人工智障的区别,包括人工智能的等级划分和算法的不完整性。最后得出应理性看待AI,既要认识其局限性,也要看到发展潜力,期待未来AI不断发展完善的结论。
关键词
AI;人工智障;智能表现;问题原因
ABSTRACT
This paper discusses whether AI is "artificial stupidity". Firstly, it elaborates on the current development status and controversies of AI, including its wide application scenarios but also existing problems such as unreasonable product recommendations, chaotic technology application and four major hidden concerns. Then it analyzes the manifestations of AI being praised as intelligent, such as fast response and high accuracy rate, and advantages in industry applications. At the same time, it points out the reasons why AI is called "artificial stupidity", including improper knowledge representation, voice recognition problems, limitations of natural language processing, challenges in computer vision, risks of autonomous decision-making, deficiencies of AI customer service, lack of general intelligence and limitations of simulation logic. Then it discusses the differences between AI and artificial stupidity, including the classification of artificial intelligence levels and the incompleteness of algorithms. Finally, it concludes that we should view AI rationally, recognize its limitations and also see its development potential, and look forward to the continuous development and improvement of AI in the future.
Keywords
AI; artificial stupidity; intelligent manifestations; reasons for problems
一、引言
(一)AI发展现状及争议
人工智能在当今时代的发展可谓突飞猛进,广泛应用于各个领域,给人们的生活带来了诸多便利。然而,AI在快速发展的同时,也引发了激烈的争议,其中一个备受关注的问题便是AI是否是“人工智障”。
目前,AI的应用场景极为广泛。从日常的语音助手到复杂的自动驾驶,从智能推荐系统到金融决策领域,AI无处不在。但与此同时,AI也暴露出一些问题。
在商品推荐方面,虽然人工智能通过算法锁定用户行为,但往往显得非常初级。例如有人在网站上搜索“汽车”,随后就会弹出“香车美女”的广告,然而“汽车”与“美女”的关联并非必然,这种推送让人觉得有些人工“弱智”。在音乐领域,网易云音乐的推送相对较好,因为其经过了编辑人员对歌曲曲风、作者、歌手的了解后,结合数据分析进行推送,而不是单纯依靠数据算法。高晓松曾表示大数据只能研究人的吃喝拉撒等简单固定动作,像在饭店吃饭,若根据大数据,因为一次吃了花生就每次都上花生甚至全是花生,这体现了大数据的局限性。
大模型的出现为AI带来了新的突破。周鸿祎认为大模型有三点重大突破:一是统一了人工智能垂直领域的问题处理方式;二是解决了对人类自然语言理解的问题;三是在语言基础之上可以进行计算机视觉、机器人控制等。李彦宏也发布了文心大模型 4.0,其理解、生成、逻辑和记忆四大能力与 GPT4 相比毫不逊色,在政务、营销客服等领域有广泛应用前景。但过去人们也曾认为 AI 是“人工智障”,因为它经常听不懂人话,而现在 AI 对“前后乱序的表述,比较模糊的表达意图,话语中的潜台词”都能进行相当准确的理解。
然而,AI 技术应用也存在乱象。一些博主用 AI“复活”已逝明星牟取利益,引发众怒;AI“换脸”类诈骗案近百起,造成经济损失高达 2 亿元;涉及 AI 知识产权争议的话题也时有出现。这说明 AI 应用的规范治理迫在眉睫。国际上,欧洲议会通过《人工智能法案》,美国出台相关管控措施,日本成立“AI 安全研究所”。我国也施行《生成式人工智能服务管理暂行办法》加强治理。
此外,AI 在发展过程中还存在四大隐忧。一是意识觉醒方面,人们担忧 AI 可能会发展出超越人类控制的自主意识,引发人类主体性危机;二是情感依恋方面,人们对 AI 产生情感投射,可能导致数字依恋障碍;三是创作冲击方面,AI 引发原创性、版权归属等问题;四是新型安全风险方面,AI 深度伪造技术被滥用,带来安全挑战。
同时,AI 模型应用端发展也面临争议和挑战,如数据隐私和算法偏见问题。数据隐私方面,AI 模型训练和应用依赖大量数据,可能带来安全风险;算法偏见方面,训练数据中的偏见可能导致算法产生歧视性结果。未来,AI 模型在应用端虽潜力巨大,但需要跨行业融合、监管完善和生态化发展。
人工智能也面临新争议话题,如深度伪造可能危害选举、人工智能生成内容的版权归属问题、谁有左右人工智能的权力以及如何贯彻人工智能法律法规等。
综上所述,AI 的发展现状充满争议,有人质疑其是否是“人工智障”。但不可否认的是,AI 在带来问题的同时,也为我们带来了机遇和潜力。我们需要在推动创新发展的同时,加强对 AI 的风险治理,实现开放合作,以确保 AI 技术的健康发展。
二、AI被赞为智能的表现
(一)快速响应与高准确率
在回答一些简单的、标准化的问题时,AI的响应速度比人工更快,而且准确率很高。以小米旗下的小爱同学为例,在升级大模型版本后,其对话能力得到进一步提升。无论是文本创作、知识库查询还是实时搜索,小爱同学都表现出色,能够快速准确地回答用户的问题,为用户提供个性化的服务。
此外,AI在医疗领域也展现出了快速响应与高准确率的优势。当前,大模型在医疗领域的应用日益广泛,涵盖了医学报告解读、医学问答、医学文书写作以及医疗相关业务处理等多个方面。
在医学报告解读方面,AI医学报告解读产品实现了大语言模型的生成和推理能力与医学专业知识的紧密结合。通过信息识别和抽取采集医学报告源数据,再对齐医学知识库和优化算法,输出相应的报告指标解读和诊断结果。例如讯飞晓医、域见医言等医检大模型,收集了大量医学报告样本参与训练,保障了较高的精度与效度。目前,AI医学报告解读主要用于辅助疾病诊断,不参与治疗方案的制定,有效降低了潜在误诊风险。
在医学问答方面,AI医学问答平台是大语言模型在医疗领域的热门应用之一。针对 C 端用户的问答涵盖医学科普、医疗咨询、养生保健、用药指导、情感陪护等多个方面。行业知识库丰富的医学知识储备加上大模型自身在问答、搜索领域的优势,使得各类医疗保健机构推出“AI 全科医生”、“全天候问诊服务”等成为可能。部分医疗机构还联合大模型厂商推出了“医生数字分身”,通过问答的形式,让拥有和医生相似知识储备的 AI 助理,助其完成病情跟踪、患者咨询、远程诊断等任务,方便了患者随时随地获得医疗帮助和解答。
在医学文书写作方面,AI 发挥了大模型在内容创作上的优势。病历、诊断书、医嘱、手术记录、入院/出院小结等常见医学文书的写作高度依赖人工,而随着 AI 大模型的深度发展和在医学领域的应用,AI 辅助医疗文书的写作自然也成了行业关注的焦点。部分综合性和专科医疗机构已经开始引进 AI 生成式病历,以提升医疗服务效率与质量。同时,入院/出院小结、病例报告、手术记录等医疗文体,也在加速向 AIGC 靠拢。在学术性医学文体的创作上,AI 的应用比重也在逐年上升。为了降低大模型幻觉问题,提高创作精度与质量,需要在保障医疗数据隐私安全和处理合规的同时,有效做好相关医疗业务数据的采集和对接。
在医疗相关业务处理方面,基于大模型支持医疗数据类业务的处理,是技术