深度学习(多变量线性回归)

博主分享了进行多变量线性回归的编程实践经验,涵盖了训练过程,包括参数theta和学习速率alpha的优化。文章提及已完成相关编程练习,并提供了数据下载链接。
摘要由CSDN通过智能技术生成

今天完成了多变量线性回归的编程练习,除了训练参数theta以外,还要训练学习速率alpha。数据下载地址

%x数据有两个属性:x(1)是房子的大小,x(2)是房子卧室的个数
%y数据是房子的价格
clear;
clc;
%% 导入数据
x=load('ex3x.dat');
y=load('ex3y.dat');
%% 对x数据进行标准化处理
x = [ones(size(x,1),1),x];
meanx = mean(x);%求均值
sigmax = std(x);%求标准偏差
x(:,2) = (x(:,2)-meanx(2))./sigmax(2);
x(:,3) =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值