求一个无序数组中第K小问题

这种问题如果先排序,那么至少时间复杂度为O(nlogn)

但是有种方法可以达到O(n)

这种方法有个阙值,只有大于44的时候用这种方法才比先排序后查找的快

首先上一段伪代码吧

if(N<44) then 排序A return A[K];   ---O(1)
else 
	i <- [N/5] 将数组分成五个元素一小组,一共N/5组  ---O(N)
排序这个5个元素的数组,找到这个N/5组中每组的中间项 组成一个集合S ---O(N)
m <- select(S,N/5,(N/5)/2) 找到这个集合中的中间项m  --T(N/5)

B = { a | a < m } 
C = { a | a = m }          ---O(N)
D = { a | a > m }  

if(k<B.length) then return select(B,B.length,k) 
else	
	if(k<B.length+C.length) return m
	if(K>B.length+C.length) return select(D,D.length,k-B.length-C.length)

分析下select算法在最坏的情况下的时间复杂度
唯一难以判别的情况只有最后一部分代码,其他部分的代码的时间复杂度都能很轻易的看出
想确定最后一部分代码的时间复杂度先确定问题规模,也就是那三个集合BCD的规模
因为m为中位数,N/5个数组也排序了,可以将其分成四组+1个点 最坏的情况下,有三组是小于m数的也就是B集合
这三组是有两组只取N/5个数组中的两个元素,有一个取3个,那么相对于原问题N的规模是7/10
也就是说 W(n) = w(n/5) + w(7/10) + cn 然后用递归树解一下,得到O(N)


上面的文字说明有点玄乎,没关系我还特意画了图



以下都是假设最坏的情况

红色的就是我们求的那个m,也就是将数组划分N/5个小数组后每个小数组排好序,取中间项组成的集合S当作的中间项

然后红色哪一行,从左到右是升序

这图当中从上到下是依次减小的!!!!!

然后我们假设黄色+蓝色+绿色都是比红色小的,这种情况是存在的吧,没毛病吧?

然后我们算下黄色+蓝色+绿色的范围(规模)是多大

为了研究问题方便,然后我们近似的认除了红色的其他四个颜色区域列数相等,(在研究N规模问题的时候是没有问题的,相别不是很大,只有红色上面下面两个数的差别可以忽略)

2r = 蓝色

2r = 绿色

3r = 黄色

3r = 棕色

2r + 2r + 3r + 3r = N

5个数,不同色所在的比例不一样,不是占3个就是占2个

全部颜色加起来就是N个元素

很明显可以得到上面的结论

所以黄色+蓝色+绿色是占全部的7N/10


那么很明显了W(n) <<= w(n/5) + w(7n/10) + cn


得到O(N)


下面给出一个java版本的实现,简单实现


	
	/**
	 * return Nth small integer in this array
	 * @param array an integer array
	 * @param length length of this integer array
	 * @param index Nth
	 * @return number of Nth small integer in this array
	 */
	public static int select(ArrayList<Integer> array,	int length,	int index){
		
		if(length<44){
			Collections.sort(array);
			return array.get(index-1);
		}
		
		int i = length/5;
		ArrayList<Integer> S =  new ArrayList<>(i);
		int j = 1;
		while(j<=i){
			int k = (j-1)*5;
			int[] n = new int[5];
			n[0] = array.get(k);
			n[1] = array.get(k+1);
			n[2] = array.get(k+2);
			n[3] = array.get(k+3);
			n[4] = array.get(k+4);
			Arrays.sort(n);
			S.add(n[2]);
			j++;
		}
		
		int m = select(S,i,i/2);
		
		ArrayList<Integer> less = new ArrayList<>();
		ArrayList<Integer> equal = new ArrayList<>();
		ArrayList<Integer> more = new ArrayList<>();
		
		for(int idx = 0;idx<array.size();idx++){
			if(array.get(idx)<m){
				less.add(array.get(idx));
			}else if(array.get(idx)==m){
				equal.add(array.get(idx));
			}else{
				more.add(array.get(idx));
			}
		}
	
		if(index<=less.size()){
			return select(less,less.size(),index);
		}else if(index<=less.size()+equal.size()){
			return m;
		}else
			return select(more,more.size(),index-less.size()-equal.size());
			
	}
	
	
	




可以使用快速选择算法来解决这个问题,其时间复杂度为O(N)。 快速选择算法基于快速排序,但不需要完全排序整个组。它通过每次选择一个基准元素并将组分为两个部分来工作,然后根据基准元素的位置来确定我们需要搜索的那个部分。 具体地,我们可以首先随机选择一个元素作为基准元素,然后将数组中比该元素小的元素放在它的左边,比该元素大的元素放在它的右边。假设基准元素的位置为p,则左边的子数组中有p个元素小于它,右边的子数组中有n-p-1个元素大于它。如果k=p,则基准元素即为第k小的元素;如果k<p,则我们需要在左边的子数组中继续搜索第k小的元素;如果k>p,则我们需要在右边的子数组中继续搜索第k-p-1小的元素。 下面是使用快速选择算法解第k小的的C代码: ``` #include <stdio.h> #include <stdlib.h> int partition(int* nums, int left, int right) { int pivot = nums[left]; int i = left + 1, j = right; while (i <= j) { while (i <= j && nums[i] < pivot) { i++; } while (i <= j && nums[j] >= pivot) { j--; } if (i < j) { int temp = nums[i]; nums[i] = nums[j]; nums[j] = temp; } } int temp = nums[left]; nums[left] = nums[j]; nums[j] = temp; return j; } int quickSelect(int* nums, int left, int right, int k) { if (left == right) { return nums[left]; } int pivotIndex = partition(nums, left, right); if (k == pivotIndex) { return nums[k]; } else if (k < pivotIndex) { return quickSelect(nums, left, pivotIndex - 1, k); } else { return quickSelect(nums, pivotIndex + 1, right, k); } } int findKthSmallest(int* nums, int size, int k) { return quickSelect(nums, 0, size - 1, k - 1); } int main() { int nums[] = {3, 2, 1, 5, 6, 4}; int size = sizeof(nums) / sizeof(int); int k = 2; int kthSmallest = findKthSmallest(nums, size, k); printf("The %dth smallest element is %d\n", k, kthSmallest); return 0; } ``` 在这个例子中,我们使用组{3, 2, 1, 5, 6, 4}来演示如何找到第2小的元素。我们首先调用findKthSmallest函,并将nums组的大小和k值作为参传递。在findKthSmallest函中,我们调用quickSelect函来实际查找第k小的元素。在quickSelect函中,我们首先将left和right参传递给partition函,以便将组分为两个部分。然后,我们根据pivotIndex的值决定搜索哪个子组。如果k等于pivotIndex,则我们找到了第k小的元素;否则,我们递归调用quickSelect函来搜索左边或右边的子组。最后,我们在main函中打印出找到的第k小的元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值