时间限制: 1 Sec 内存限制: 128 MB
题目描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入
输入的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出
输出包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
样例输入
70 3
71 100
69 1
1 2
样例输出
3
对于30%的数据,M <= 10;
对于全部的数据,M <= 100。
--------------------------------------------------------
对于01背包问题,要考虑的是“放或者不放”,这里给出状态转移方程:
dp[i][j]=max{dp[i-1][j],dp[i-1][j-v[i]+w[i]}
(前提是当前可以放入物品,这里的i代表第i个物品,j代表当前背包容量,题目里则是拥有的时间)
注意:第一次写我是时间从t到1来写的,没有过,后面想到了,若是从大至小设置dp数组,可能会有重复的情况,所以j应该从1-t。这样写的话则需要判断当前时间值(j)是否大于物品所花费时间,放不了则使用dp[i-1][j]。
下面是代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int dp[105][1005];//建立dp二维数组
int v[105];int w[105];//v代表第i件物品的时间花费,w代表第i件物品的价值
int t,m;
int Max(int a,int b)
{
return(a>b?a:b);
}//建立状态转移方程后需要用到这个函数
int main()
{
scanf("%d%d",&t,&m);
memset(dp,0,sizeof(dp[0]));//初始化dp数组
for(int i=1;i<=m;i++)
{
scanf("%d%d",&v[i],&w[i]);//读入每一个物品的时间花费和价值
}
for(int i=1;i<=m;i++)//一个一个的放物体,并且对比,如果当前可以放,则更新值,否则设置成放完上一个物体时拥有的价值
for(int j=0;j<=t;j++)//
{
if(j-v[i]<0)
{
dp[i][j]=dp[i-1][j];//不能放,采用dp[i-1][j]
}
else if(j-v[i]>=0)
{
dp[i][j]=Max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]);//可以放,这里考虑放或者不放的问题
}
}
printf("%d\n",dp[m][t]);//dp数组中的[m][t]就是所求答案
return 0;
}