算法强化 —— 提升树算法(二)

本文深入探讨了梯度提升树的原理,通过损失函数的负梯度找到残差的近似值,并使用回归树进行拟合。通过泰勒展开,解释了为何选取负梯度方向能降低损失。此外,还介绍了包含多个叶子节点的回归树模型表示方法以及如何寻找最佳步长ρm和系数γjm,这些系数基于损失函数在每个叶子节点的最优常数更新值。
摘要由CSDN通过智能技术生成

梯度提升树

梯度提升树,是利用损失函数的负梯度在当前模型的值作为残差的一个近似值,进行拟合回归树,这样只要可以求梯度的函数,我们都可以进行求解。
为了简便去掉求和符号和下标,改用向量化表示,则损失函数为:
loss = L ( y , f m ( x ) ) = L ( y − f m − 1 ( x ) − h m ( x ; a m ) ) \text {loss}=L\left(y_, f_{m}\left(x\right)\right)=L \left(y-f_{m-1}\left(x\right)-h_{m}\left(x; a_{m}\right)\right) loss=L(y,fm(x))=L(yfm1(x)hm(x;am))

按照泰勒一阶展开(注意这里xgboost用的是二阶展开式)进行展开:
 loss  = L ( y , f m − 1 ( x ) + h m ( x ; a m ) ) = L ( y , f m − 1 ( x ) ) + ∂ L ( y , f m − 1 ( x ) ) ∂ f m − 1 ( x ) h m ( x ; a m ) \text { loss }=L\left(y, f_{m-1}(x)+h_{m}\left(x ; a_{m}\right)\right)=L\left(y, f_{m-1}(x)\right)+\frac{\partial L\left(y, f_{m-1}(x)\right)}{\partial f_{m-1}(x)} h_{m}\left(x ; a_{m}\right)  loss =L(y,fm1(x)+hm(x;am))=L(y,fm1(x))+fm1(x)L(y,fm1(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值