基于Pytorch的MLP模块实现

MLP分类效果一般好于线性分类器,即将特征输入MLP中再经过softmax来进行分类。

具体实现为将原先线性分类模块:

self.classifier = nn.Linear(config.hidden_size, num_labels)

替换为:

self.classifier = MLP(config.hidden_size, num_labels)

并且添加MLP模块:

    class MLP(nn.Module):
        def __init__(self, input_size, common_size):
            super(MLP, self).__init__()
            self.linear = nn.Sequential(
                nn.Linear(input_size, input_size // 2),
                nn.ReLU(inplace=True),
                nn.Linear(input_size // 2, input_size // 4),
                nn.ReLU(inplace=True),
                nn.Linear(input_size // 4, common_size)
            )

        def forward(self, x):
            out = self.linear(x)
            return out

看一下模块结构:

mlp = MLP(1000,3)
print(mlp)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值