最大连续子序列和(状态的无后效性)——附带完整实现代码

1 问题描述

给定一个数字序列A1.A2,…,An,求i,j ( 1 <= i <= j <= n),使得Ai+…+Aj最大,输出这个最大和。

例如:
-2 11 -4 13 -5 -2
显然11 + (-4) + 13 之和最大,最大和为20

如果使用暴力,枚举左端点和右端点,需要时间复杂度O(n2),而计算A[i]+…+A[j]需要O(n)的复杂度,因此总复杂为O(n3).

就算采用记录前缀和方法,令S[i] = A[0] + A[i], 这样A[i] +…+A[j]=S[j] -S[i-1],来计算的时间变为O(1),总复杂度仍然有O(n2),对于n为105的题目,还是不能接受。

用动态规划就可以把时间复杂度降低为O(n),【左端点的枚举根本没有必要】,

  • 1 用dp[i]表示A[i]结尾的连续序列最大和(A[i]必须为连续序列的末尾)【不然就会产生多个相同的dp[i]】
    • 以-2 11 -4 13 -5 -2为例子(下标从0开始)
    • dp[3] = 20(计算过程:11+(-4) + 13)
    • dp[4] = 15(计算过程:11+(-4) + 13+(-5)), 如果A[i]不为连续序列的末尾,则值就会为20
  • 2 dp为必须以A[i]为连续序列的结尾的序列,最大和有两种情况
    • 最大序列和只有一个元素,即以A[i]开始,以A[i]结尾
    • 最大序列和有多个元素,从前面某出A[p]开始(p<i),一直到A[i]结尾。
  • 3 因此状态转移方程为:
    • dp[i] = max (A[i], d[i -1] + A[i]);
  • 4 这个方程只与i和i前面的元素有关,且边界dp[0] = A[0],由此从小到大枚举i,来得到全部的数组dp

2 实现代码

2.1 暴力实现

#include<cstdio>

int maxSum(int *A, int n){
    int sum = A[0];
    for(int i = 0; i < n;i++){//遍历数组
        for(int j = i;j < n; j++){//确定前缀和的基准元素(即以它往前的元素)
            int tmp = 0;
            for(int k = i;k <= j;k++){//计算A[i~j]之间的数组和
                tmp += A[k]; 
            }
            if(tmp > sum) sum = tmp; 
        }
    }
    return sum;
}

int main(){
    //int A[] = {-2, -5, -1, -3};
    int A[] = {1, -2, 3, 10, -4, 7, 2, -5};
    printf("%d", maxSum(A, sizeof(A)/sizeof(A[0])));
    return 0;
}

时间复杂度:O(n3)
空间复杂度:O(1)

2.2简单实现

#include <cstdio>
#include <algorithm>

using std::max;

const int MAXN = 1000;
int A[MAXN];//序列
int dp[MAXN];//dp[i]存放以A[i]为结尾的连续序列最大和

int main(int argc, char const *argv[])
{
    int n;
    scanf("%d", &n);
    for (int i = 0; i < n; ++i)
    {
        scanf("%d", &A[i]);
    }

    //边界
    dp[0] = A[0];
    for (int i = 1; i < n; ++i)
    {
        //状态转移方程
        dp[i] = max(A[i], dp[i- 1] + A[i]);
    }

    int index = 0;
    for (int i = 1; i < n; ++i)
    {
        if(dp[i] > dp[index]){
            index = i;
        }
    }

    printf("%d\n", dp[index]);
    return 0;
}

Sample Input:
6
-2 11 -4 13 -5 -2
Sample Output:
20

2.3 提炼为一个函数

#include<cstdio>
int maxSum(int *A, int n){//求最大连续子序列之和
    int dp, sum;//dp为当前的子序列和,sum为最大子序列和
    dp = sum = A[0];
    for(int i = 1;i < n ;i++){
        if(dp > 0){//A[i] + dp > A[i]
            dp = dp + A[i];
        }else{
            dp = A[i];
        }
        if(dp > sum) sum = dp;
    }
    return sum;
}

int main(){
    //int A[] = {-2, -5, -1, -3};
    int A[] = {1, -2, 3, 10, -4, 7, 2, -5};
    printf("%d", maxSum(A, sizeof(A)/sizeof(A[0])));
    return 0;
}

时间复杂度:O(n)
空间复杂度:O(1)

3 总结

状态的无后效性:当前状态记录了历史信息,一旦当前状态确定,就不会再改变,且未来的决策只能在已有一个或若干状态的基础上进行,历史信息只能通过已有的状态来影响未来的决策

⚠️: 并不是所有的状态都具有无后效性,如何设计状态和状态转移方程,才是动态规划的核心。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁星蓝雨

如果觉得文章不错可以请喝咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值