# 1085 Perfect Sequence （25 分）——3种解法（二分、two pointers）

Given a sequence of positive integers and another positive integer p. The sequence is said to be a perfect sequence if M≤m×p where M and m are the maximum and minimum numbers in the sequence, respectively.

Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.

### Input Specification:

Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (≤10​5​​) is the number of integers in the sequence, and p (≤10​9​​) is the parameter（参数）. In the second line there are N positive integers, each is no greater than 10​9​​.

### Output Specification:

For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.

### Sample Input:

10 8
2 3 20 4 5 1 6 7 8 9


### Sample Output:

8

#include<cstdio>
#include<algorithm>
using namespace std;

const int maxn = 100010;
int A[maxn];
int n, p;

int binarySearch(int i ,long long x){
if(A[n - 1] <= x)  return n;
int left = i + 1, right = n -1, mid;
while(left < right){
mid = (left + right ) / 2;
if(A[mid] > x){
right = mid;
}else{
left = mid + 1;
}
}
return  left;
}

int main(){
scanf("%d%d", &n, &p);
for (int i = 0; i < n; ++i) {
scanf("%d", &A[i]);
}
sort(A, A + n);
int ans = 1;
for (int j = 0; j < n; ++j) {
int k = binarySearch(j, (long long)A[j] * p);
ans = max(ans, k - j);
}
printf("%d", ans);
return 0;
}

//甲
#include<cstdio>
#include<algorithm>

using namespace std;

const int maxn = 100010;
long long A[maxn];
int n;

int main(){
long long  p;
scanf("%d%lld", &n, &p);
for (int i = 0; i < n; ++i) {
scanf("%lld", &A[i]);
}
sort(A, A + n);
int ans = 1;
for (int j = 0; j < n; ++j) {
int k = upper_bound(A + j + 1, A + n, A[j] * p) - A;
ans = max(ans, k - j);
}
printf("%d\n", ans);

return 0;
}

#include<cstdio>
#include<algorithm>
using namespace std;

typedef long long LL;
const int maxn = 100010;
int A[maxn];

int main(){
LL n, p;
scanf("%lld%lld", &n, &p);
for (int i = 0; i < n; ++i) {
scanf("%d", &A[i]);
}
sort(A, A + n);
int i = 0, j =0, count = 1;
while(j < n && i< n){
while(j < n&& A[i] * p >= A[j]){
count = max(count, j - i + 1);
j++;
}
i++;
}
printf("%d\n", count);
return  0;
}