深度学习(一):引言(结合花书,吴恩达课程总结)

本文概述了深度学习的基本概念,包括从形式化描述到机器学习的转变,重点介绍了表示学习和深度学习的发展历程。深度学习通过多层次的概念表示简化复杂结构,如前馈深度网络。文中还探讨了深度学习历史上的关键转折点,如神经网络的演变、反向传播、深度信念网络,以及数据量、模型规模和精度对深度学习兴起的影响。
摘要由CSDN通过智能技术生成

深度系列主要为 我在国科大研一期间,在《深度学习》课程中所学知识概述,根据PPT制作思维导图。

补充内容来源:深度学习(花书),吴恩达深度学习课程

-------------------------------------------------------------------------------------------------------------------------------------------------------------------

创造人工智能自古以来就是人类的梦想。

可形式化描述:对人类来说难,对机器来说简单(IBM的深蓝国际象棋系统)

难形式化描述:对人类来说简单,对机器来说难(图像识别,语音识别等)

1.形式化的语言进行硬编码,人工智能的知识库方法,无法取得巨大成功

2.自己获取知识的能力(机器学习)——>依赖于数据的表示——>设计特征

3.机器自己发掘数据的表示(表示学习)——>自编码器——>用于学习特征的算法

设计特征或设计用于学习特征的算法时的目的是分离出能够解释观察数据的变差因素(factors of variation)(高层次,抽象的特征,不能被直接观察到)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值