- 博客(295)
- 资源 (15)
- 收藏
- 关注
原创 zedgraph使用中的难题
现在我将曲线画在X2Axis/Y2Axis上,希望有如下功能:1、当移动该曲线时,XAxis/YAxis的坐标不会随着曲线移动;2、希望自定义XAxis/YAxis的坐标值。请高手帮我解答,谢谢!
2009-11-18 17:37:00 722
原创 信息科技伦理与道德3:智能决策
1950s-1980s:人工智能的诞生与早期发展热潮20世纪80年代-21世纪初:统计学派/机器学习/早期神经网络(模式识别)21世纪初-2017年:人工神经网络大放光彩2017年-至今:“深度强化学习”崛起发展历史总览:
2025-01-10 10:02:20 458
原创 信息科技伦理与道德2:研究方法
为什么你能判断一项技术的应用是否道德?这一行为是否帮助/侵害了他人?这一行为是否符合/违背了公序良俗?这一行为是否遵守/违背了法律?这一行为只单纯能影响别人是否喜欢你?……信息科技伦理谈的是什么?
2025-01-02 10:42:46 1641
原创 信息科技伦理与道德1:绪论
DeepFake 深伪技术:通过神经网络技术进行大样本学习,将个人的声音、面部表情及身体动作拼接合成图片、视频、音频内容。
2025-01-01 20:25:11 558
原创 计算机伦理与职业规范2:伦理与道德
在西方文化中,“伦理学”一词源出希腊文“ethos”,意为风俗、习惯 、性格等。在中国文化中,伦理一词最早出现于《乐纪》:“乐者,通伦理者也。我国古代思想家们对伦理学都十分重视,“三纲五常”就是基于伦理学产生的。最开始对伦理学的应用主要体现在对于家庭长幼辈分的界定,后又延伸至社会关系的界定。
2024-12-27 11:41:24 315
原创 计算机伦理与职业规范1:计算的社会背景
面对全球冲突,一帮数学家开始致力于尽可能快地解决复杂数学问题。冲突双方都会通过无线电发送命令和战略信息,而这些信号也可能被敌方截获。为了防止信息泄露,军方会对信号进行加密,而能否破解敌方编码关乎着成百上千人的性命,自动化破解过程显然大有裨益。
2024-12-26 11:07:52 906
原创 张恒汝的个人简介:招生宣传用
张恒汝,男,九三学社社员,博士,教授,硕士生导师,机器学习研究中心副主任,四川省学术和技术带头人后备人选,中国科协科技人才奖项评审专家,四川省网络安全与信息化技术专家库成员,CCF、ACM会员,CAAI粒计算与知识发现专委会委员。主要从事机器学习及其应用相关教学和科研工作,如推荐系统、人工智能安全、能源与人工智能等。主持和参与国家自然科学基金、国家科技重大专项、四川省科技厅项目、四川省教育厅重点项目等科研项目10余项。
2024-09-18 14:25:28 1469
原创 数字化转型练习题-2
29、深度学习中的神经网络层数越多,其模型的复杂度越高,但也会引发的问题是__________。23、对于一个已有数据集,增加其数据的个数,使其有更多的多样性的操作是()。25、在卷积神经网络中,能让隐层的神经元以一定的概率不被激活的方法是()。4、遵循“大平台、微服务、轻应用”的设计理念,构建工业应用( )群。C、完全代替人 D、 模拟、延伸和扩展人的智能。A、智能化、低端化 、绿色化 B、智能化、高端化、绿色化。C、智能化、通俗化、绿色化 D、高端化、绿色化、无人化。
2024-07-31 12:03:58 1298
原创 智慧交通相关资源
https://aiarena.tencent.com/aiarena/zh/match/open-competition-2024/open-competition-2024-3https://cityflow.readthedocs.io/en/latest/flow.htmlhttps://github.com/gjzheng93/frap-pubhttps://gitcode.com/wingsweihua/IntelliLight/overview?utm_source=csdn_githu
2024-07-14 10:40:49 185
原创 Linux编程基础 8.4:epoll工作模式
poll机制的工作原理及流程与select类似,但poll可监控的进程数量不受select中第二个因素——fd_set集合容量的限制,用户可在程序中自行设置被监测的文件描述符集的容量,当然poll在阻塞模式下也采用轮询的方式监测文件描述符集,因此应合理设置poll中监控进程的数量。
2024-05-31 11:15:38 499
原创 论文笔记:液体管道泄漏综合检测与定位模型
许多液体,如水和油,都是通过管道运输的,在管道中可能发生泄漏,造成能源浪费、环境污染和对人类健康的威胁。本文描述了一种集成的泄漏检测和定位模型,该模型可用于液体管道中的背景泄漏(现有技术手段和措施未能检测到的管网漏点的漏失量)甚至微泄漏。该模型包括动态监测模块(DMM)和静态测试模块(STM)。利用压力波的振幅传播和衰减模型,DMM可以检测到较大的背景泄漏。基于压力损失模型的STM可以检测微泄漏,是对DMM的有效补偿。为了验证所提出的模型,在实验室规模和现场进行了实验,并实施了现场应用。
2024-03-18 17:17:00 1708 1
原创 图机器学习(3)-面向节点的人工特征工程
地铁导航图计算机是看不懂这些图,计算机只能看懂向量、矩阵。传统图机器学习只讨论连接特征。构造一个新的特征x1x2,有利于分开这种数据。人需要去翻译这些计算机不懂的特征,变成计算机可以懂的向量、矩阵。
2024-03-08 16:00:03 562 1
原创 推荐系统的三个方面
推荐系统面临的问题主要有:冷启动问题、样本分布不平衡问题(有些用户交互得多,有些用户交互得少)、隐私保护问题、可解释性问题(是因为什么喜欢或者说因为哪一个方面喜欢)
2024-01-25 17:11:02 466
原创 机器学习的三个方面
第三、知识的质量如何,如果是垃圾,得到的模型也很差,这个涉及到数据质量评估、异常点检测、数据中毒攻击及防范等。有了数据,有了模型后,如何来训练模型,方式就非常多,有课程学习、迁移学习、强化学习、联邦学习、小样本学习等。选取什么样的模型,使用什么样的神经元来构造大脑,通常这个部分都是在已有的模型上进行修改,重构新的模型太难。第二、知识是否有体系,也就是说样本之间是否存在某种关联、差异等,这个涉及到样本选择等问题;包括数据采集、增强和质量管理,相当于给人工智能模型学习什么样的知识。第一、什么专业的知识;
2024-01-05 09:30:21 696 1
原创 论文笔记:Multi-Concept Customization of Text-to-Image Diffusion
论文:Multi-Concept Customization of Text-to-Image Diffusion当生成模型生成从大规模数据库中学习的概念的高质量图像时,用户通常希望合成他们自己的概念的实例(例如,他们的家庭,宠物或物品)。我们能教一个模型快速掌握一个新概念吗,给出几个例子?此外,我们能否将多个新概念组合在一起?我们提出自定义扩散,一种有效的方法来增强现有的文本到图像模型。我们发现,仅优化文本到图像调节机制中的几个参数就足以强大地表示新概念,同时实现快速调优。
2023-10-20 09:52:47 1263
原创 人工智能安全-2-非平衡数据处理(2)
代价敏感:设置损失函数的权重,使得少数类判别错误的损失大于多数类判别错误的损失;单类分类器方法:仅对少数类进行训练,例如运用SVM算法;集成学习方法:即多个分类器,然后利用投票或者组合得到结果。
2023-09-21 10:27:01 596
原创 人工智能安全-6-SQL注入检测
SQLIA:SQL injection attack SQL 注入攻击是一个简单且被广泛理解的技术,它把 SQL 查询片段插入到 GET 或 POST 参数里提交到网络应用。由于SQL数据库在Web应用中的普遍性,使得SQL攻击在很多网站上都可以进行。并且这种攻击技术的难度不高,但攻击变换手段众多,危害性大,使得它成为网络安全中比较棘手的安全问题。
2023-09-15 18:05:59 1876
原创 人工智能安全-5-网络入侵检测
入侵检测是网络安全中的经典问题,入侵是指攻击者违反系统安全策略,试图破坏计算资源的完整性、机密性或可用性的任何行为。不管是哪种类型的入侵检测系统(IDS),其工作过程大体是相同的,可以分为三个主要的环节,即信息收集、分类检测和决策,其中,分类检测和决策环节是IDS的关键,都需要一定的人工智能技术来支持。IDS有多种不同的划分方法,可以根据信息来源、检测方法、体系结构进行分类。基于主机IDS;基于网络的IDS;混合IDS。异常检测;误用检测;集中式IDS;分布式IDS。
2023-09-15 17:44:14 1193
原创 人工智能安全-4-小样本问题
在小样本监督分类中,通常将问题表述为 N-way-K-shot分类,(1) 近似正确:存在一个很小的数。(2) 可能正确:给定一个值。这两个常量可以理解为,足够大或者假设空间的大小。发生的可能性就比较大。
2023-09-11 17:47:11 472
原创 论文笔记:一分类及其在大数据中的潜在应用综述
论文:A literature review on one‑class classification and its potential applications in big data发表:Journal of Big Data在严重不平衡的数据集中,使用传统的二分类或多分类通常会导致对具有大量实例的类的偏见。在这种情况下,对少数类实例的建模和检测是非常困难的。一分类(OCC)是一种检测与已知类实例相比较的异常数据点的方法,可以用于解决与严重不平衡数据集相关的问题,这在大数据中尤其常见。
2023-09-07 10:48:37 1441 1
原创 论文笔记:基于概念漂移的在线类非平衡学习系统研究
论文:A Systematic Study of Online Class Imbalance Learning With Concept Drift发表:2018年发表在TNNLS上源代码:?作为一个新兴的研究课题,在线类非平衡学习往往结合了类非平衡和概念漂移的挑战。它处理具有非常倾斜的类分布的数据流,其中可能发生概念漂移。它最近受到越来越多的研究关注;然而,很少有研究解决类失衡和观念漂移并存的综合问题。
2023-08-24 11:59:29 1032
原创 论文笔记:从不平衡数据流中学习的综述: 分类、挑战、实证研究和可重复的实验框架
实验研究在515个不平衡数据流上评估了24个最先进的数据流算法,在二分类和多分类场景下这些数据流结合了静态和动态类不平衡比率、实例级困难、概念漂移、真实世界和半合成数据集。这导致了一项大规模的实验研究,比较了数据流挖掘领域中最先进的分类器。我们讨论了这些场景中最先进的分类器的优点和缺点,并为最终用户提供了针对不平衡数据流选择最佳算法的一般建议。通过这种方式,我们提出了一种标准化的方法来在不平衡的数据流中进行实验,其他研究人员可以使用这种方法来对新提出的方法进行完整、可信和公平的评估。
2023-08-24 10:26:31 2035 1
原创 机器学习(3)
4.1 logistic回归4.2 支持向量机(SVM)4.3 PCA4.4 半监督学习4.5 主动学习4.6 代价敏感学习4.7 多标签学习4.8 多示例学习。
2023-08-10 16:31:12 547
原创 机器学习(1)
对于西瓜这个抽象类来说,它具有“色泽”,“根蒂”,“敲声”三个属性:“敲声=浊响”的西瓜是好瓜;“根蒂=蜷缩”的西瓜是好瓜;“敲声=浊响”并且“根蒂=蜷缩”的西瓜是好瓜。这是我们人为逻辑推理得到的假设,这些假设就是机器学习需要学到的**“模型(model)”**。如果想让机器去“学习”这些假设,该怎么做?最基本的想法是为机器提供所有的假设,对每个假设进行验证,一旦发现不符合数据的假设,就剔除。
2023-08-09 16:24:59 778
原创 勘探开发人工智能应用:人工智能概述
机器学习、深度学习、计算机视觉等技术已在勘探开发、油气生产、炼油炼化、经营管理等重点环节进行应用与推广。参考书籍:《油气人工智能》 龚仁斌,李欣,李宁,吴杰文编著 石油工业出版社 2021年9月。
2023-08-09 10:42:26 897
原创 机器学习复习题
4.()是机器学习较早的研究方向,其源于英国数学家托马斯.贝叶斯在1763年发表的一篇论文中提到的贝叶斯定理。C. 人工神经网络 D. 贝叶斯学习。A . 决策树 B. 随机森林。
2023-08-03 11:51:44 2756
Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement文献调研.docx
2021-08-01
Multi-Stage Progressive Image Restoration文献调研.docx
2021-08-01
Underexposed Photo Enhancement using Deep Illumination Estimation文献调研.docx
2021-08-01
EnlightenGAN-Deep Light Enhancement without Paired Supervision文献调研.docx
2021-08-01
Deep Bilateral Learning for Real-Time Image Enhancement文献调研.docx
2021-08-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人