给定一个1~n的排列,每次可以交换一个偶数长度区间的前后两半,请在,9^6的操作次数内完成这个序列的升序排序.
可以发现任何一个数的归位都可以在至多2次交换内完成,第一次,我们假设我们要将下标为i的数移到下标位t的位置,那么第一次我们将i移动到t/2+1的位置(如果2*i>=t那么这一步操作可以省略),第二次,我们就可以直接将i移动至t,只需要交换(2*i-t+1,t)这个区间就可以完成归位.下面考虑第一次操作,有两种情况,一是t/2+1-i<=i那么我们可以交换区间(2*i-t/2,t/2+1);否则我们可以交换区间(i,2*(t/2+1)-i-1).具体是怎么推导的可以画图看出来:第一种是向前找交换区间,i作为交换区间前一半的最后一个数,第二种是向后找交换区间,i作为交换区间的第一个数,二者必有一个成立.于是代码就可以写出来了
AC代码如下:
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int a[100005];
int ans[200005];
void swapp(int L,int R)
{
for(int i=L;i<=(R+L-1)/2;i++)
swap(a[i],a[i+(R-L+1)/2]);
}
int main(int argc, char const *argv[])
{
int T;
scanf("%d", &T);
while(T--)
{
memset(ans,0,sizeof(ans));
int n;
scanf("%d", &n);
for(int i=1;i<=n;i++)
scanf("%d", &a[i]);
int t=n,cnt=0;
while(t>0)
{
int i;
for(i=1;i<=t;i++)
{
if(a[i]==t)
break;
}
if(i!=t&&2*i<t)
{
int a,b;
if(t/2+1-i<=i)
{
a=2*i-t/2;
b=t/2+1;
}
else
{
a=i;
b=2*(t/2+1)-i-1;
}
ans[2*cnt]=a;
ans[2*cnt+1]=b;
cnt++;
swapp(a,b);
i=t/2+1;
}
if(i!=t&&2*i>=t)
{
swapp(2*i-t+1,t);
ans[2*cnt]=2*i-t+1;
ans[2*cnt+1]=t;
cnt++;
}
t--;
}
printf("%d\n", cnt);
for(int j=0;j<cnt;j++)
printf("%d %d\n", ans[2*j],ans[2*j+1]);
}
return 0;
}